Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Simbolo is active.

Publication


Featured researches published by Michele Simbolo.


Nature Genetics | 2013

Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas

Yuchen Jiao; Timothy M. Pawlik; Robert A. Anders; Florin M. Selaru; Mirte M. Streppel; Donald J. Lucas; Noushin Niknafs; Violeta Beleva Guthrie; Anirban Maitra; Pedram Argani; G. Johan A. Offerhaus; Juan Carlos Roa; Lewis R. Roberts; Gregory J. Gores; Irinel Popescu; Sorin Alexandrescu; Simona Dima; Matteo Fassan; Michele Simbolo; Andrea Mafficini; Paola Capelli; Rita T. Lawlor; Andrea Ruzzenente; Alfredo Guglielmi; Giampaolo Tortora; Filippo de Braud; Aldo Scarpa; William R. Jarnagin; David S. Klimstra; Rachel Karchin

Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas.


PLOS ONE | 2013

DNA qualification workflow for next generation sequencing of histopathological samples.

Michele Simbolo; Marisa Gottardi; Vincenzo Corbo; Matteo Fassan; Andrea Mafficini; Giorgio Malpeli; Rita T. Lawlor; Aldo Scarpa

Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for qualification of DNA preparations should include the sequential combination of NanoDrop and Qubit to assess the purity and quantity of dsDNA, respectively.


Cancer Discovery | 2015

A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics

Anguraj Sadanandam; Stephan Wullschleger; Costas A. Lyssiotis; Carsten Grötzinger; Stefano Barbi; Samantha Bersani; Jan L. Körner; Ismael Wafy; Andrea Mafficini; Rita T. Lawlor; Michele Simbolo; John M. Asara; Hendrik Bläker; Lewis C. Cantley; Bertram Wiedenmann; Aldo Scarpa; Douglas Hanahan

UNLABELLED Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation-enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy.


The Journal of Pathology | 2017

Lung neuroendocrine tumours: Deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D

Michele Simbolo; Andrea Mafficini; Katarzyna Otylia Sikora; Matteo Fassan; Stefano Barbi; Vincenzo Corbo; Luca Mastracci; Borislav Rusev; Federica Grillo; Caterina Vicentini; Roberto Ferrara; Sara Pilotto; Federico Davini; Giuseppe Pelosi; Rita T. Lawlor; Marco Chilosi; Giampaolo Tortora; Emilio Bria; Gabriella Fontanini; Marco Volante; Aldo Scarpa

Next‐generation sequencing (NGS) was applied to 148 lung neuroendocrine tumours (LNETs) comprising the four World Health Organization classification categories: 53 typical carcinoid (TCs), 35 atypical carcinoid (ACs), 27 large‐cell neuroendocrine carcinomas, and 33 small‐cell lung carcinomas. A discovery screen was conducted on 46 samples by the use of whole‐exome sequencing and high‐coverage targeted sequencing of 418 genes. Eighty‐eight recurrently mutated genes from both the discovery screen and current literature were verified in the 46 cases of the discovery screen, and validated on additional 102 LNETs by targeted NGS; their prevalence was then evaluated on the whole series. Thirteen of these 88 genes were also evaluated for copy number alterations (CNAs). Carcinoids and carcinomas shared most of the altered genes but with different prevalence rates. When mutations and copy number changes were combined, MEN1 alterations were almost exclusive to carcinoids, whereas alterations of TP53 and RB1 cell cycle regulation genes and PI3K/AKT/mTOR pathway genes were significantly enriched in carcinomas. Conversely, mutations in chromatin‐remodelling genes, including those encoding histone modifiers and members of SWI–SNF complexes, were found at similar rates in carcinoids (45.5%) and carcinomas (55.0%), suggesting a major role in LNET pathogenesis. One AC and one TC showed a hypermutated profile associated with a POLQ damaging mutation. There were fewer CNAs in carcinoids than in carcinomas; however ACs showed a hybrid pattern, whereby gains of TERT, SDHA, RICTOR, PIK3CA, MYCL and SRC were found at rates similar to those in carcinomas, whereas the MEN1 loss rate mirrored that of TCs. Multivariate survival analysis revealed RB1 mutation (p = 0.0005) and TERT copy gain (p = 0.016) as independent predictors of poorer prognosis. MEN1 mutation was associated with poor prognosis in AC (p = 0.0045), whereas KMT2D mutation correlated with longer survival in SCLC (p = 0.0022). In conclusion, molecular profiling may complement histology for better diagnostic definition and prognostic stratification of LNETs.


PLOS ONE | 2014

Reporting Tumor Molecular Heterogeneity in Histopathological Diagnosis

Andrea Mafficini; Eliana Amato; Matteo Fassan; Michele Simbolo; Davide Antonello; Caterina Vicentini; Maria Scardoni; Samantha Bersani; Marisa Gottardi; Borislav Rusev; Giorgio Malpeli; Vincenzo Corbo; Stefano Barbi; Katarzyna Sikora; Rita T. Lawlor; Giampaolo Tortora; Aldo Scarpa

Background Detection of molecular tumor heterogeneity has become of paramount importance with the advent of targeted therapies. Analysis for detection should be comprehensive, timely and based on routinely available tumor samples. Aim To evaluate the diagnostic potential of targeted multigene next-generation sequencing (TM-NGS) in characterizing gastrointestinal cancer molecular heterogeneity. Methods 35 gastrointestinal tract tumors, five of each intestinal type gastric carcinomas, pancreatic ductal adenocarcinomas, pancreatic intraductal papillary mucinous neoplasms, ampulla of Vater carcinomas, hepatocellular carcinomas, cholangiocarcinomas, pancreatic solid pseudopapillary tumors were assessed for mutations in 46 cancer-associated genes, using Ion Torrent semiconductor-based TM-NGS. One ampulla of Vater carcinoma cell line and one hepatic carcinosarcoma served to assess assay sensitivity. TP53, PIK3CA, KRAS, and BRAF mutations were validated by conventional Sanger sequencing. Results TM-NGS yielded overlapping results on matched fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues, with a mutation detection limit of 1% for fresh-frozen high molecular weight DNA and 2% for FFPE partially degraded DNA. At least one somatic mutation was observed in all tumors tested; multiple alterations were detected in 20/35 (57%) tumors. Seven cancers displayed significant differences in allelic frequencies for distinct mutations, indicating the presence of intratumor molecular heterogeneity; this was confirmed on selected samples by immunohistochemistry of p53 and Smad4, showing concordance with mutational analysis. Conclusions TM-NGS is able to detect and quantitate multiple gene alterations from limited amounts of DNA, moving one step closer to a next-generation histopathologic diagnosis that integrates morphologic, immunophenotypic, and multigene mutational analysis on routinely processed tissues, essential for personalized cancer therapy.


Oncotarget | 2016

BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing

Andrea Mafficini; Michele Simbolo; Alice Parisi; Borislav Rusev; Claudio Luchini; Ivana Cataldo; Elena Piazzola; Nicola Sperandio; Giona Turri; Massimo Franchi; Giampaolo Tortora; Chiara Bovo; Rita T. Lawlor; Aldo Scarpa

BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue.


The Journal of Pathology | 2016

Lung neuroendocrine tumours: deep sequencing of the four WHO histotypes reveals chromatin remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D

Michele Simbolo; Andrea Mafficini; Katarzyna Otylia Sikora; Matteo Fassan; Stefano Barbi; Vincenzo Corbo; Luca Mastracci; Borislav Rusev; Federica Grillo; Caterina Vicentini; Roberto Ferrara; Sara Pilotto; Federico Davini; Giuseppe Pelosi; Rita T. Lawlor; Marco Chilosi; Giampaolo Tortora; Emilio Bria; Gabriella Fontanini; Marco Volante; Aldo Scarpa

Next‐generation sequencing (NGS) was applied to 148 lung neuroendocrine tumours (LNETs) comprising the four World Health Organization classification categories: 53 typical carcinoid (TCs), 35 atypical carcinoid (ACs), 27 large‐cell neuroendocrine carcinomas, and 33 small‐cell lung carcinomas. A discovery screen was conducted on 46 samples by the use of whole‐exome sequencing and high‐coverage targeted sequencing of 418 genes. Eighty‐eight recurrently mutated genes from both the discovery screen and current literature were verified in the 46 cases of the discovery screen, and validated on additional 102 LNETs by targeted NGS; their prevalence was then evaluated on the whole series. Thirteen of these 88 genes were also evaluated for copy number alterations (CNAs). Carcinoids and carcinomas shared most of the altered genes but with different prevalence rates. When mutations and copy number changes were combined, MEN1 alterations were almost exclusive to carcinoids, whereas alterations of TP53 and RB1 cell cycle regulation genes and PI3K/AKT/mTOR pathway genes were significantly enriched in carcinomas. Conversely, mutations in chromatin‐remodelling genes, including those encoding histone modifiers and members of SWI–SNF complexes, were found at similar rates in carcinoids (45.5%) and carcinomas (55.0%), suggesting a major role in LNET pathogenesis. One AC and one TC showed a hypermutated profile associated with a POLQ damaging mutation. There were fewer CNAs in carcinoids than in carcinomas; however ACs showed a hybrid pattern, whereby gains of TERT, SDHA, RICTOR, PIK3CA, MYCL and SRC were found at rates similar to those in carcinomas, whereas the MEN1 loss rate mirrored that of TCs. Multivariate survival analysis revealed RB1 mutation (p = 0.0005) and TERT copy gain (p = 0.016) as independent predictors of poorer prognosis. MEN1 mutation was associated with poor prognosis in AC (p = 0.0045), whereas KMT2D mutation correlated with longer survival in SCLC (p = 0.0022). In conclusion, molecular profiling may complement histology for better diagnostic definition and prognostic stratification of LNETs.


Scientific Reports | 2017

PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

Michele Milella; Italia Falcone; Fabiana Conciatori; Silvia Matteoni; Andrea Sacconi; Teresa De Luca; Chiara Bazzichetto; Vincenzo Corbo; Michele Simbolo; Isabella Sperduti; Antonina Benfante; Anais Del Curatolo; Ursula Cesta Incani; Federico Malusa; Adriana Eramo; Giovanni Sette; Aldo Scarpa; Marina Konopleva; Michael Andreeff; James A. McCubrey; Giovanni Blandino; Matilde Todaro; Giorgio Stassi; Ruggero De Maria; Francesco Cognetti; Donatella Del Bufalo; Ludovica Ciuffreda

Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.


Journal of Hepatology | 2018

Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations

Christopher P. Wardell; Masashi Fujita; Toru Yamada; Michele Simbolo; Matteo Fassan; Rosa Karlic; Paz Polak; Jaegil Kim; Yutaka Hatanaka; Kazuhiro Maejima; Rita T. Lawlor; Yoshitsugu Nakanishi; Tomoko Mitsuhashi; Akihiro Fujimoto; Mayuko Furuta; Andrea Ruzzenente; Simone Conci; Ayako Oosawa; Aya Sasaki-Oku; Kaoru Nakano; Hiroko Tanaka; Yujiro Yamamoto; Kubo Michiaki; Yoshiiku Kawakami; Masaki Ueno; Shinya Hayami; Kunihito Gotoh; Shun-ichi Ariizumi; Masakazu Yamamoto; Hiroki Yamaue

BACKGROUND & AIMS Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. METHODS We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. RESULTS We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. CONCLUSIONS BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. LAY SUMMARY We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition.


Annals of Surgery | 2018

Ampulla of Vater Carcinoma: Sequencing Analysis Identifies TP53 Status as a Novel Independent Prognostic Factor and Potentially Actionable ERBB, PI3K, and WNT Pathways Gene Mutations.

Andrea Mafficini; Eliana Amato; Ivana Cataldo; Borislav Rusev; Luca Bertoncello; Vincenzo Corbo; Michele Simbolo; Claudio Luchini; Matteo Fassan; Cinzia Cantù; Roberto Salvia; Giovanni Marchegiani; Giampaolo Tortora; Rita T. Lawlor; Claudio Bassi; Aldo Scarpa

Objective: To identify molecular prognostic factors and potentially actionable mutations in ampulla of Vater cancer (AVC). Background: The largely variable outcomes of AVCs make clinical decisions difficult regarding the need of postsurgical therapy, which is based on morphological and immunohistochemical classification that do not adequately consider the varying degrees of heterogeneity present in many AVCs. No approved targeted therapies for AVC exist, but some show promising results requiring better molecular characterization to identify potential responders. Methods: We assessed 80 AVCs for the prognostic value of mutations of kirsten rat sarcoma (KRAS), neuroblastoma RAS (NRAS), B rapidly accelerated fibrosarcoma (BRAF), TP53, and 4 membrane erythroblastosis oncogene B (ERBB) receptor tyrosine kinases (EGFR-ERBB1, HER2-ERBB2, HER3-ERBB3, HER4-ERBB4) amenable to pharmacological inhibition. Moreover, we evaluated mutations in 16 key components of rat sarcoma (RAS), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), protein 53 (P53), transforming growth factor beta (TGF-&bgr;), and wingless/integrated (WNT) pathways, recently associated to AVC by whole-exome sequencing. Results: TP53 and KRAS were mutated in 41% and 35% of cases, respectively, and emerged as independent prognostic factors together with tumor stage and regardless of the histotype (TP53: P = 0.0006; KRAS: P = 0.0018; stage IIB: P = 0.0117; stage III–IV: P = 0.0020). ERBB, WNT and PI3K pathway genes were mutated in 37.5% of cases. Conclusions: KRAS and TP53 mutations are negative predictors of survival in AVCs, regardless of histotype. Potentially actionable mutations in ERBB, WNT, and PI3K signaling pathway genes are present in 37.5% of all cases. These might be amenable to target therapy using available drugs like Everolimus in PI3K-mutated cases or compounds under active screening against ERBB and WNT signaling.

Collaboration


Dive into the Michele Simbolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio Bria

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge