Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Corbo is active.

Publication


Featured researches published by Vincenzo Corbo.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Cell | 2015

Organoid Models of Human and Mouse Ductal Pancreatic Cancer

Sylvia F. Boj; Chang-Il Hwang; Lindsey A. Baker; Iok In Christine Chio; Dannielle D. Engle; Vincenzo Corbo; Myrthe Jager; Mariano Ponz-Sarvise; Hervé Tiriac; Mona S. Spector; Ana Gracanin; Tobiloba Oni; Kenneth H. Yu; Ruben van Boxtel; Meritxell Huch; Keith Rivera; John P. Wilson; Michael E. Feigin; Daniel Öhlund; Abram Handly-Santana; Christine M. Ardito-Abraham; Michael Ludwig; Ela Elyada; Brinda Alagesan; Giulia Biffi; Georgi Yordanov; Bethany Delcuze; Brianna Creighton; Kevin Wright; Youngkyu Park

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


PLOS ONE | 2013

DNA qualification workflow for next generation sequencing of histopathological samples.

Michele Simbolo; Marisa Gottardi; Vincenzo Corbo; Matteo Fassan; Andrea Mafficini; Giorgio Malpeli; Rita T. Lawlor; Aldo Scarpa

Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for qualification of DNA preparations should include the sequential combination of NanoDrop and Qubit to assess the purity and quantity of dsDNA, respectively.


Journal of Experimental Medicine | 2017

Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer

Daniel Öhlund; Abram Handly-Santana; Giulia Biffi; Ela Elyada; Ana S. Almeida; Mariano Ponz-Sarvise; Vincenzo Corbo; Tobiloba Oni; Stephen Hearn; Eun Jung Lee; Iok In Christine Chio; Chang-Il Hwang; Hervé Tiriac; Lindsey A. Baker; Dannielle D. Engle; Christine Feig; Anne Kultti; Mikala Egeblad; James M. Crawford; Hans Clevers; Youngkyu Park; David A. Tuveson

Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of &agr;-smooth muscle actin (&agr;SMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated &agr;SMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development.


Endocrine-related Cancer | 2010

MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases

Vincenzo Corbo; Irene Dalai; Maria Scardoni; Stefano Barbi; Stefania Beghelli; Samantha Bersani; Luca Albarello; Claudio Doglioni; Christina Schott; Paola Capelli; Marco Chilosi; Letizia Boninsegna; Karl-Friedrich Becker; Massimo Falconi; Aldo Scarpa

Pancreatic endocrine tumors (PETs) may be part of hereditary multiple endocrine neoplasia type 1 (MEN1) syndrome. While MEN1 gene mutation is the only ascertained genetic anomaly described in PETs, no data exist on the cellular localization of MEN1-encoded protein, menin, in normal pancreas and PETs. A total of 169 PETs were used to assess the i) MEN1 gene mutational status in 100 clinically sporadic PETs by direct DNA sequencing, ii) immunohistochemical expression of menin in normal pancreas and 140 PETs, including 71 cases screened for gene mutations, and iii) correlation of these findings with clinical-pathological parameters. Twenty-seven PETs showed mutations that were somatic in 25 patients and revealed to be germline in 2 patients. Menin immunostaining showed strong nuclear and very faint cytoplasmic signal in normal islet cells, whereas it displayed abnormal location and expression levels in 80% of tumors. PETs harboring MEN1 truncating mutations lacked nuclear protein, and most PETs with MEN1 missense mutations showed a strong cytoplasmic positivity for menin. Menin was also misplaced in a significant number of cases lacking MEN1 mutations. In conclusion, the vast majority of PETs showed qualitative and/or quantitative alterations in menin localization. In 30% of cases, this was associated with MEN1 mutations affecting sequences involved in nuclear localization or protein-protein interaction. In cases lacking MEN1 mutations, the alteration of one of the menin interactors may have prevented its proper localization, as suggested by recent data showing that menin protein shuttles between the nucleus and cytoplasm and also affects the subcellular localization of its interactors.


International Journal of Cancer | 2014

Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling

Katia Nones; Nic Waddell; Sarah Song; Ann Marie Patch; David Miller; Amber L. Johns; Jianmin Wu; Karin S. Kassahn; David L. A. Wood; Peter Bailey; Lynn Fink; Suzanne Manning; Angelika N. Christ; Craig Nourse; Stephen Kazakoff; Darrin Taylor; Conrad Leonard; David K. Chang; Marc D. Jones; Michelle Thomas; Clare Watson; Mark Pinese; Mark J. Cowley; Ilse Rooman; Marina Pajic; Giovanni Butturini; Anna Malpaga; Vincenzo Corbo; Stefano Crippa; Massimo Falconi

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.


PLOS ONE | 2009

Mutational profile of GNAQQ209 in human tumors.

Simona Lamba; Lara Felicioni; Fiamma Buttitta; Fonnet E. Bleeker; Sara Malatesta; Vincenzo Corbo; Aldo Scarpa; Monica Rodolfo; Margaret A. Knowles; Milo Frattini; Antonio Marchetti; Alberto Bardelli

Background Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein α-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene. Methodology To assess if the mutations are present in other tumor types we performed a systematic mutational profile of the GNAQ exon 5 in a panel of 922 neoplasms, including glioblastoma, gastrointestinal stromal tumors (GIST), acute myeloid leukemia (AML), blue naevi, skin melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, and thyroid carcinomas. Principal Findings We detected the previously reported mutations in 6/13 (46%) blue naevi. Changes affecting Q209 were not found in any of the other tumors. Our data indicate that the occurrence of GNAQ mutations display a unique pattern being present in a subset of melanocytic tumors but not in malignancies of glial, epithelial and stromal origin analyzed in this study.


Journal of Clinical Oncology | 2013

Histomolecular Phenotypes and Outcome in Adenocarcinoma of the Ampulla of Vater

David K. Chang; Nigel B. Jamieson; Amber L. Johns; Christopher J. Scarlett; Marina Pajic; Angela Chou; Mark Pinese; Jeremy L. Humphris; Marc D. Jones; Christopher W. Toon; Adnan Nagrial; Lorraine A. Chantrill; Venessa T. Chin; Andreia V. Pinho; Ilse Rooman; Mark J. Cowley; Jianmin Wu; R. Scott Mead; Emily K. Colvin; Jaswinder S. Samra; Vincenzo Corbo; Claudio Bassi; Massimo Falconi; Rita T. Lawlor; Stefano Crippa; Nicola Sperandio; Samantha Bersani; Euan J. Dickson; Mohamed Mohamed; Karin A. Oien

PURPOSE Individuals with adenocarcinoma of the ampulla of Vater demonstrate a broad range of outcomes, presumably because these cancers may arise from any one of the three epithelia that converge at that location. This variability poses challenges for clinical decision making and the development of novel therapeutic strategies. PATIENTS AND METHODS We assessed the potential clinical utility of histomolecular phenotypes defined using a combination of histopathology and protein expression (CDX2 and MUC1) in 208 patients from three independent cohorts who underwent surgical resection for adenocarcinoma of the ampulla of Vater. RESULTS Histologic subtype and CDX2 and MUC1 expression were significant prognostic variables. Patients with a histomolecular pancreaticobiliary phenotype (CDX2 negative, MUC1 positive) segregated into a poor prognostic group in the training (hazard ratio [HR], 3.34; 95% CI, 1.69 to 6.62; P < .001) and both validation cohorts (HR, 5.65; 95% CI, 2.77 to 11.5; P < .001 and HR, 2.78; 95% CI, 1.25 to 7.17; P = .0119) compared with histomolecular nonpancreaticobiliary carcinomas. Further stratification by lymph node (LN) status defined three clinically relevant subgroups: one, patients with histomolecular nonpancreaticobiliary (intestinal) carcinoma without LN metastases who had an excellent prognosis; two, those with histomolecular pancreaticobiliary carcinoma with LN metastases who had a poor outcome; and three, the remainder of patients (nonpancreaticobiliary, LN positive or pancreaticobiliary, LN negative) who had an intermediate outcome. CONCLUSION Histopathologic and molecular criteria combine to define clinically relevant histomolecular phenotypes of adenocarcinoma of the ampulla of Vater and potentially represent distinct diseases with significant implications for current therapeutic strategies, the ability to interpret past clinical trials, and future trial design.


PLOS ONE | 2010

Mutational profiling of kinases in human tumours of pancreatic origin identifies candidate cancer genes in ductal and ampulla of vater carcinomas

Vincenzo Corbo; Rossana Ritelli; Stefano Barbi; Niccola Funel; Daniela Campani; Alberto Bardelli; Aldo Scarpa

Background Protein kinases are key regulators of cellular processes (such as proliferation, apoptosis and invasion) that are often deregulated in human cancers. Accordingly, kinase genes have been the first to be systematically analyzed in human tumors leading to the discovery that many oncogenes correspond to mutated kinases. In most cases the genetic alterations translate in constitutively active kinase proteins, which are amenable of therapeutic targeting. Tumours of the pancreas are aggressive neoplasms for which no effective therapeutic strategy is currently available. Methodology/Principal Findings We conducted a DNA-sequence analysis of a selected set of 35 kinase genes in a panel of 52 pancreatic exocrine neoplasms, including 36 pancreatic ductal adenocarcinoma, and 16 ampulla of Vater cancer. Among other changes we found somatic mutations in ATM, EGFR, EPHA3, EPHB2, and KIT, none of which was previously described in cancers. Conclusions/Significance Although the alterations identified require further experimental evaluation, the localization within defined protein domains indicates functional relevance for most of them. Some of the mutated genes, including the tyrosine kinases EPHA3 and EPHB2, are clearly amenable to pharmacological intervention and could represent novel therapeutic targets for these incurable cancers.


Annals of Oncology | 2012

Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries

Vincenzo Corbo; Stefania Beghelli; Samantha Bersani; Davide Antonello; Giorgio Talamini; Matteo Brunelli; Paola Capelli; Massimo Falconi; Aldo Scarpa

BACKGROUND Kinases represent potential therapeutic targets in pancreatic endocrine tumours (PETs). PATIENTS AND METHODS Thirty-five kinase genes were sequenced in 36 primary PETs and three PET cell lines: (i) 4 receptor tyrosine kinases (RTK), epithelial growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), tyrosine-protein kinase KIT (KIT), platelet-derived growth factor receptor alpha (PDGFRalpha); (ii) 6 belonging to the Akt/mTOR pathway; and (iii) 25 frequently mutated in cancers. The immunohistochemical expression of the four RTKs and the copy number of EGFR and HER2 were assessed in 140 PETs. RESULTS Somatic mutations were found in KIT in one and ATM in two primary neoplasms. Among 140 PETs, EGFR was immunopositive in 18 (13%), HER2 in 3 (2%), KIT in 16 (11%), and PDGFRalpha in 135 (96%). HER2 amplification was found in 2/130 (1.5%) PETs. KIT membrane immunostaining was significantly associated with tumour aggressiveness and shorter patient survival. PET cell lines QGP1, CM and BON harboured mutations in FGFR3, FLT1/VEGFR1 and PIK3CA, respectively. CONCLUSIONS Only rare PET cases, harbouring either HER2 amplification or KIT mutation, might benefit from targeted drugs. KIT membrane expression deserves further attention as a prognostic marker. ATM mutation is involved in a proportion of PET. The finding of specific mutations in PET cell lines renders these models useful for preclinical studies involving pathway-specific therapies.BACKGROUND Kinases represent potential therapeutic targets in pancreatic endocrine tumours (PETs). PATIENTS AND METHODS Thirty-five kinase genes were sequenced in 36 primary PETs and three PET cell lines: (i) 4 receptor tyrosine kinases (RTK), epithelial growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), tyrosine-protein kinase KIT (KIT), platelet-derived growth factor receptor alpha (PDGFRalpha); (ii) 6 belonging to the Akt/mTOR pathway; and (iii) 25 frequently mutated in cancers. The immunohistochemical expression of the four RTKs and the copy number of EGFR and HER2 were assessed in 140 PETs. RESULTS Somatic mutations were found in KIT in one and ATM in two primary neoplasms. Among 140 PETs, EGFR was immunopositive in 18 (13%), HER2 in 3 (2%), KIT in 16 (11%), and PDGFRalpha in 135 (96%). HER2 amplification was found in 2/130 (1.5%) PETs. KIT membrane immunostaining was significantly associated with tumour aggressiveness and shorter patient survival. PET cell lines QGP1, CM and BON harboured mutations in FGFR3, FLT1/VEGFR1 and PIK3CA, respectively. CONCLUSIONS Only rare PET cases, harbouring either HER2 amplification or KIT mutation, might benefit from targeted drugs. KIT membrane expression deserves further attention as a prognostic marker. ATM mutation is involved in a proportion of PET. The finding of specific mutations in PET cell lines renders these models useful for preclinical studies involving pathway-specific therapies.

Collaboration


Dive into the Vincenzo Corbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio Bria

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge