Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne W. Schmidt is active.

Publication


Featured researches published by Anne W. Schmidt.


European Journal of Pharmacology | 2001

Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile

Anne W. Schmidt; Lorraine A. Lebel; Harry Ralph Howard; Stevin H. Zorn

Ziprasidone is a novel antipsychotic agent with a unique combination of pharmacological activities at human receptors. Ziprasidone has high affinity for human 5-HT receptors and for human dopamine D(2) receptors. Ziprasidone is a 5-HT(1A) receptor agonist and an antagonist at 5-HT(2A), 5-HT(2C) and 5-HT(1B/1D) receptors. Additionally, ziprasidone inhibits neuronal uptake of 5-HT and norepinephrine comparable to the antidepressant imipramine. This unique pharmacological profile of ziprasidone may be related to its clinical effectiveness as a treatment for the positive, negative and affective symptoms of schizophrenia with a low propensity for extrapyramidal side effects, cognitive deficits and weight gain.


European Journal of Pharmacology | 1997

Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation

Hans Rollema; Yi Lu; Anne W. Schmidt; Stevin H. Zorn

Clozapine (1-10 mg/kg s.c.) produces a selective increase in dopamine release in rat prefrontal cortex which is, in large part (approximately 50%), mediated via activation of 5-HT1A receptors. Clozapine is a moderately potent, partial 5-HT1A receptor agonist and activation of 5-HT1A receptors may contribute to its efficacy against negative symptoms and reduced extrapyramidal side effect liability. Agonist affinity for 5-HT1A receptors could thus be a desirable feature in the design of new antipsychotics.


Biological Psychiatry | 2000

5-HT1A receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex

Hans Rollema; Yi Lu; Anne W. Schmidt; Jeffrey Sprouse; Stevin H. Zorn

Background: Ziprasidone (Zeldox) is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic receptors and transporters and potent agonist activity at serotonin 5-HT1A receptors. 5-HT1A receptor agonism may be an important feature in ziprasidone’s clinical actions because 5-HT1A agonists increase cortical dopamine release, which may underlie efficacy against negative symptoms and reduce dopamine D2 antagonist-induced extrapyramidal side effects. This study investigated the in vivo 5-HT1A agonist activity of ziprasidone by measuring the contribution of 5-HT1A receptor activation to the ziprasidone-induced cortical dopamine release in rats. Methods: Effects on dopamine release were measured by microdialysis in prefrontal cortex and striatum. The role of 5-HT1A receptor activation was estimated by assessing the sensitivity of the response to pretreatment with the 5-HT1A antagonist, WAY-100635. For comparison, the D2/5-HT2A antagonists clozapine and olanzapine, the D2 antagonist haloperidol, the 5-HT2A antagonist MDL 100,907 and the 5-HT1A agonist 8-OHDPAT were included. Results: Low doses (<3.2 mg/kg) of ziprasidone, clozapine, and olanzapine increased dopamine release to approximately the same extent in prefrontal cortex as in striatum, but higher doses (≥3.2 mg/kg) resulted in an increasingly preferential effect on cortical dopamine release. The 5-HT1A agonist 8-OHDPAT produced a robust increase in cortical dopamine (DA) release without affecting striatal DA release. In contrast, the D2 antagonist haloperidol selectively increased striatal DA release, whereas the 5-HT2A antagonist MDL 100,907 had no effect on cortical or striatal DA release. Prior administration of WAY-100635 completely blocked the cortical DA increase produced by 8-OHDPAT and significantly attenuated the ziprasidone- and clozapine-induced cortical DA increase. WAY-100635 pretreatment had no effect on the olanzapine-induced DA increase. Conclusions: The preferential increase in DA release in rat prefrontal cortex produced by ziprasidone is mediated by 5-HT1A receptor activation. This result extends and confirms other in vitro and in vivo data suggesting that ziprasidone, like clozapine, acts as a 5-HT1A receptor agonist in vivo, which may contribute to its activity as an antipsychotic with efficacy against negative symptoms and a low extrapyramidal side effect liability.


European Journal of Pharmacology | 1992

The substance P receptor antagonist CP-96,345 interacts with Ca2+ channels

Anne W. Schmidt; Stafford McLean; James Heym

The nonpeptide substance P receptor antagonist CP-96,345 was found to displace binding to Ca2+ channel binding sites labelled with either [3H]desmethoxyverapamil or [3H]diltiazem and to enhance [3H]nitrendipine binding. Unlike the substance P receptor antagonist activity of CP-96,345, these effects on Ca2+ channel binding sites were neither stereoselective nor species-dependent. It is concluded that CP-96,345 may act as an antagonist of L-type Ca2+ channels in addition to being a potent NK1 receptor (substance P) antagonist.


Neuropharmacology | 2004

8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production

Jeffrey Sprouse; Linda Reynolds; Xingfang Li; John Braselton; Anne W. Schmidt

Neurons in the suprachiasmatic nucleus (SCN), the site of the endogenous biological clock in mammals, fire spontaneously, peaking in firing rate near ZT6 or at the midpoint of the light phase in a 12:12 light-dark cycle. In rat hypothalamic slices, tissue incubations with drugs can produce a shift in this daily rhythm, the magnitude of which is dependent upon dose and the time of treatment. Previous work with 8-OH-DPAT had noted its ability to produce a phase advance, an earlier occurrence of the peak in neuronal firing, when applied at ZT6. Activation of 5-HT7 receptors was thought to be responsible for the shift, despite the clear preference of 8-OH-DPAT for 5-HT1A sites in terms of receptor binding affinity. In the present work, the actions of 8-OH-DPAT in SCN slices were confirmed and expanded to include additional dose-response and antagonist treatments. By itself, 8-OH-DPAT produced a concentration-dependent phase advance that was sensitive to co-application with 5-HT7 antagonists (ritanserin, mesulergine, SB-269970), but not to 5-HT1A antagonists (WAY-100,635, UH-301). Assignment of the receptor mechanisms for the antagonists employed was accomplished in experiments measuring binding affinities and the generation of cAMP, the latter monitored in a HEK-293 cell line expressing the r5-HT7 receptor and in tissue derived from rat SCN. The results indicate that the increases observed in cAMP levels are small but appear to be sufficient to produce a pharmacological resetting of the clock pacemaker. By aiding in the identification of the 5-HT receptor subtype responsible for the observed phase shifts and cAMP changes, 8-OH-DPAT represents an important pharmacological tool for 5-HT7 receptor activation, essentially broadening its role as the prototypical 5-HT1A agonist to one combining these two receptor activities.


Journal of Medicinal Chemistry | 2010

Discovery of 4-(5-Methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (CP-810,123), a Novel α7 Nicotinic Acetylcholine Receptor Agonist for the Treatment of Cognitive Disorders in Schizophrenia: Synthesis, SAR Development, and in Vivo Efficacy in Cognition Models

Christopher J. O'Donnell; Bruce N. Rogers; Brian S. Bronk; Dianne K. Bryce; Jotham Wadsworth Coe; Karen K. Cook; Allen J. Duplantier; Edelweiss Evrard; Mihály Hajós; William E. Hoffmann; Raymond S. Hurst; Noha Maklad; Robert J. Mather; Stafford McLean; Frank M. Nedza; Brian Thomas O'neill; Langu Peng; Weimin Qian; Melinda M. Rottas; Steven Bradley Sands; Anne W. Schmidt; Alka Shrikhande; Douglas K. Spracklin; Diane F. Wong; Andy Q. Zhang; Lei Zhang

A novel alpha 7 nAChR agonist, 4-(5-methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (24, CP-810,123), has been identified as a potential treatment for cognitive deficits associated with psychiatric or neurological conditions including schizophrenia and Alzheimers disease. Compound 24 is a potent and selective compound with excellent pharmaceutical properties. In rodent, the compound displays high oral bioavailability and excellent brain penetration affording high levels of receptor occupancy and in vivo efficacy in auditory sensory gating and novel object recognition. The structural diversity of this compound and its preclinical in vitro and in vivo package support the hypothesis that alpha 7 nAChR agonists may have potential as a pharmacotherapy for the treatment of cognitive deficits in schizophrenia.


Journal of Medicinal Chemistry | 2009

Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy

Patrick Robert Verhoest; Caroline Proulx-Lafrance; Michael Corman; Lois K. Chenard; Christopher John Helal; Xinjun Hou; Robin J. Kleiman; Shenping Liu; Eric S. Marr; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Anne W. Schmidt; Robert Williams; Frederick R. Nelson; Kari R. Fonseca; Spiros Liras

By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.


Journal of Pharmacology and Experimental Therapeutics | 2012

Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

Robin J. Kleiman; Douglas S. Chapin; Curt Christoffersen; Jody Freeman; Kari R. Fonseca; Kieran F. Geoghegan; Sarah Grimwood; Victor Guanowsky; Mihály Hajós; John F. Harms; Christopher John Helal; William E. Hoffmann; Geralyn P. Kocan; Mark J. Majchrzak; Dina McGinnis; Stafford McLean; Frank S. Menniti; Fredrick R. Nelson; Robin Roof; Anne W. Schmidt; Patricia A. Seymour; Diane Stephenson; Francis David Tingley; Michelle Vanase-Frawley; Patrick Robert Verhoest; Christopher J. Schmidt

Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.


Journal of Medicinal Chemistry | 2008

2-aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists.

Yuhpyng L. Chen; R. Scott Obach; John Braselton; Michael Corman; James Forman; Jody Freeman; Randall James Gallaschun; Robert S. Mansbach; Anne W. Schmidt; Jeffrey Sprouse; F. David Tingley; Elizabeth Winston; David W. Schulz

An orally active clinical candidate of corticotropin-releasing factor 1 (CRF 1) antagonist 1 showed a significant positive food effect in dog and human after oral administration. Efforts to address the food effect issue led us to explore and discover compounds in series 2 as orally active CRF 1 receptor antagonists, in which some compounds showed improved physicochemical properties while retaining desired pharmacological properties. Compound 3a (CP-376395) was selected for further development, due not only to its reduced food effects but also its greater efficacy in CNS models. Compound 3a was advanced to the clinic. The synthesis of representative potential candidates and their in vitro, ex vivo, and in vivo data are described.


European Journal of Pharmacology | 2001

Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain.

David E. Johnson; Hans Rollema; Anne W. Schmidt; Aileen D. McHarg

In vivo microdialysis was used to assess the central serotonergic effects and extracellular brain levels of the 5-HT(1B/1D) receptor agonists eletriptan, zolmitriptan and sumatriptan in rats after intravenous and intracerebral administration, while their binding affinities and functional potencies were determined at 5-HT(1B), 5-HT(1D) and 5-HT(1A) receptors. In vitro studies showed that all three triptans are high affinity, full agonists at 5-HT(1B/1D) receptors, but that sumatriptan is functionally less potent as a 5-HT(1B/1D) agonist than zolmitriptan and eletriptan. Local intracortical perfusion with the compounds via the dialysis probe decreased cortical 5-HT (5-hydroxytryptamine, serotonin) release with ED(50) values of approximately 0.1 microM for eletriptan and zolmitriptan and 0.5 microM for sumatriptan. At 3.2 mg/kg i.v., both eletriptan and zolmitriptan decreased 5-HT levels by about 35%, while sumatriptan had no effect, despite the fact that maximal sumatriptan concentrations in cortical dialysates were higher (8.8 nM at 20 min) than those of zolmitriptan (5.9 nM at 20 min) and eletriptan (2.6 nM at 40 min). The observation that eletriptan and zolmitriptan produce almost identical central serotonergic effects, after intracerebral as well as after systemic administration, is in agreement with their comparable functional 5-HT(1B/1D) receptor agonist potencies and their free levels in cortical dialysates after 3.2 mg/kg i.v. On the other hand, the lack of central serotonergic effects of 3.2 mg/kg i.v. sumatriptan is likely due to its weaker functional 5-HT(1B/1D) receptor agonist potency than eletriptan and zolmitriptan, rather than lower brain levels, consistent with sumatriptans fivefold lower potency after intracerebral administration.

Researchain Logo
Decentralizing Knowledge