Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michihiro Suga is active.

Publication


Featured researches published by Michihiro Suga.


Nature | 2009

Structure of the connexin 26 gap junction channel at 3.5 Å resolution

Shoji Maeda; So Nakagawa; Michihiro Suga; Eiki Yamashita; Atsunori Oshima; Yoshinori Fujiyoshi; Tomitake Tsukihara

Gap junctions consist of arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. Here we report the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 Å resolution, and discuss structural determinants of solute transport through the channel. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a positively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage.


Science | 2015

Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex

Xiaochun Qin; Michihiro Suga; Tingyun Kuang; Jian Ren Shen

Photosystem I enters into the spotlight Plants rely on large complexes of proteins, chlorophyll, and other cofactors to turn light into chemical energy. Qin et al. present the crystal structures of photosystem I (PSI) and the light-harvesting complex I (LHCI) supercomplex from pea plants (see the Perspective by Croce). The well-resolved structure of the outer antenna complexes and their interaction with the PSI core provide a structural basis for calculating excitation energy transfer efficiency. Moreover, the organization and orientation of chlorophyll and carotenoid cofactors within and between PSI and LHCI hint at energy transfer and photoprotection mechanisms. Science, this issue p. 989; see also p. 970 The structure of the photosynthetic light-harvesting complex from pea suggests how light is converted into chemical energy. [Also see Perspective by Croce] Photosynthesis converts solar energy to chemical energy by means of two large pigment-protein complexes: photosystem I (PSI) and photosystem II (PSII). In higher plants, the PSI core is surrounded by a large light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core with extremely high efficiency. We report the structure of PSI-LHCI, a 600-kilodalton membrane protein supercomplex, from Pisum sativum (pea) at a resolution of 2.8 angstroms. The structure reveals the detailed arrangement of pigments and other cofactors—especially within LHCI—as well as numerous specific interactions between the PSI core and LHCI. These results provide a firm structural basis for our understanding on the energy transfer and photoprotection mechanisms within the PSI-LHCI supercomplex.


Nature | 2017

Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL

Michihiro Suga; Fusamichi Akita; Michihiro Sugahara; Minoru Kubo; Yoshiki Nakajima; Takanori Nakane; Keitaro Yamashita; Yasufumi Umena; Makoto Nakabayashi; Takahiro Yamane; Takamitsu Nakano; Mamoru Suzuki; Tetsuya Masuda; Shigeyuki Inoue; Tetsunari Kimura; Takashi Nomura; Shinichiro Yonekura; Long Jiang Yu; Tomohiro Sakamoto; Taiki Motomura; Jinghua Chen; Yuki Kato; Takumi Noguchi; Kensuke Tono; Yasumasa Joti; Takashi Kameshima; Takaki Hatsui; Eriko Nango; Rie Tanaka; Hisashi Naitow

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, ‘distorted-chair’ form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the ‘radiation damage-free’ structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.


Acta Crystallographica Section D-biological Crystallography | 2009

A description of the structural determination procedures of a gap junction channel at 3.5 A ˚ resolution

Michihiro Suga; Shoji Maeda; So Nakagawa; Eiki Yamashita; Tomitake Tsukihara

The structural determination procedures of a gap junction channel at 3.5 Å resolution are described, including the preparation of crystals, intensity data collection, data processing, phasing and structural refinement.


Biochemistry | 2013

Crystal Structure of Psb31, a Novel Extrinsic Protein of Photosystem II from a Marine Centric Diatom and Implications for Its Binding and Function

Ryo Nagao; Michihiro Suga; Ayako Niikura; Akinori Okumura; Faisal Hammad Mekky Koua; Takehiro Suzuki; Tatsuya Tomo; Isao Enami; Jian Ren Shen

Psb31 is a fifth extrinsic protein found in photosystem II (PSII) of a centric diatom, Chaetoceros gracilis . The protein has been shown to bind directly to PSII in the absence of other extrinsic proteins and serves in part as a substitute for PsbO in supporting oxygen evolution. We report here the crystal structure of Psb31 at a resolution of 1.55 Å. The structure of Psb31 was composed of two domains, one major, N-terminal four helical domain and one minor, flexible C-terminal domain. The four helices in the N-terminal domain were arranged in an up-down-up-down fold, which appeared unexpectedly to be similar to the structure of spinach PsbQ, in spite of their low sequence homology. This suggests that the centric diatom PSII contains another PsbQ-type extrinsic protein in addition to the original PsbQ protein found in the organism. On the other hand, the C-terminal domain of Psb31 has a unique structure composed of one loop and one short helix. Based on these structural analysis and chemical cross-linking experiments, residues responsible for the binding of Psb31 to PSII intrinsic proteins were suggested. The results are discussed in relation to the copy number of extrinsic proteins in higher plant PSII.


Acta Crystallographica Section D-biological Crystallography | 2011

Distinguishing between Cl- and O2(2-) as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase

Michihiro Suga; Naomine Yano; Kazumasa Muramoto; Kyoko Shinzawa-Itoh; Tomoko Maeda; Eiki Yamashita; Tomitake Tsukihara; Shinya Yoshikawa

Fully oxidized cytochrome c oxidase (CcO) under enzymatic turnover is capable of pumping protons, while fully oxidized CcO as isolated is not able to do so upon one-electron reduction. The functional difference is expected to be a consequence of structural differences: [Fe(3+)-OH(-)] under enzymatic turnover versus [Fe(3+)-O(2)(2-)-Cu(2+)] for the as-isolated CcO. However, the electron density for O(2)(2-) is equally assignable to Cl(-). An anomalous dispersion analysis was performed in order to conclusively demonstrate the absence of Cl(-) between the Fe(3+) and Cu(2+). Thus, the peroxide moiety receives electron equivalents from cytochrome c without affecting the oxidation states of the metal sites. The metal-site reduction is coupled to the proton pump.


Current Opinion in Structural Biology | 2016

Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex.

Michihiro Suga; Xiaochun Qin; Tingyun Kuang; Jian Ren Shen

Photosystem I (PSI) is one of the two photosystems in oxygenic photosynthesis, and absorbs light energy to generate reducing power for the reduction of NADP+ to NADPH with a quantum efficiency close to 100%. The plant PSI core forms a supercomplex with light-harvesting complex I (LHCI) with a total molecular weight of over 600kDa. Recent X-ray structure analysis of the PSI-LHCI membrane-protein supercomplex has revealed detailed arrangement of the light-harvesting pigments and other cofactors especially within LHCI. Here we introduce the overall structure of the PSI-LHCI supercomplex, and then focus on the excited energy transfer (EET) pathways from LHCI to the PSI core and photoprotection mechanisms based on the structure obtained.


FEBS Letters | 2013

Crystal structure at 1.5 Å resolution of the PsbV2 cytochrome from the cyanobacterium Thermosynechococcus elongatus

Michihiro Suga; Thanh Lan Lai; Miwa Sugiura; Jian Ren Shen; Alain Boussac

PsbV2 is a c‐type cytochrome present in a very low abundance in the thermophilic cyanobacterium Thermosynechococcus elongatus. We purified this cytochrome and solved its crystal structure at a resolution of 1.5 Å. The protein existed as a dimer in the crystal, and has an overall structure similar to other c‐type cytochromes like Cytc 6 and Cytc 550, for example. However, the 5th and 6th heme iron axial ligands were found to be His51 and Cys101, respectively, in contrast to the more common bis‐His or His/Met ligands found in most cytochromes. Although a few other c‐type cytochromes were suggested to have this axial coordination, this is the first crystal structure reported for a c‐type heme with this unusual His/Cys axial coordination. Previous spectroscopic characterizations of PsbV2 are discussed in relation to its structural properties.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007

Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution.

Sangwoo Kim; Michihiro Suga; Kyoko Ogasahara; Terumi Ikegami; Yoshiko Minami; Toshitsugu Yubisui; Tomitake Tsukihara

Physarum polycephalum cytochrome b(5) reductase catalyzes the reduction of cytochrome b(5) by NADH. The structure of P. polycephalum cytochrome b(5) reductase was determined at a resolution of 1.56 A. The molecular structure was compared with that of human cytochrome b(5) reductase, which had previously been determined at 1.75 A resolution [Bando et al. (2004), Acta Cryst. D60, 1929-1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.


Nature | 2018

Structure of photosynthetic LH1–RC supercomplex at 1.9 Å resolution

Long Jiang Yu; Michihiro Suga; Zheng Yu Wang-Otomo; Jian Ren Shen

Light-harvesting complex 1 (LH1) and the reaction centre (RC) form a membrane-protein supercomplex that performs the primary reactions of photosynthesis in purple photosynthetic bacteria. The structure of the LH1–RC complex can provide information on the arrangement of protein subunits and cofactors; however, so far it has been resolved only at a relatively low resolution. Here we report the crystal structure of the calcium-ion-bound LH1–RC supercomplex of Thermochromatium tepidum at a resolution of 1.9 Å. This atomic-resolution structure revealed several new features about the organization of protein subunits and cofactors. We describe the loop regions of RC in their intact states, the interaction of these loop regions with the LH1 subunits, the exchange route for the bound quinone QB with free quinone molecules, the transport of free quinones between the inside and outside of the LH1 ring structure, and the detailed calcium-ion-binding environment. This structure provides a solid basis for the detailed examination of the light reactions that occur during bacterial photosynthesis.The structure of the Thermochromatium tepidum calcium-ion-bound light-harvesting–reaction centre (LH1–RC) supercomplex, which performs the primary reactions of photosynthesis in purple photosynthetic bacteria, is resolved to the atomic level.

Collaboration


Dive into the Michihiro Suga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge