Mickael Maton
university of lille
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mickael Maton.
International Journal of Pharmaceutics | 2014
Guillaume Vermet; Stéphanie Degoutin; Feng Chai; Mickael Maton; Marc Bria; Cécile Danel; Hartmut F. Hildebrand; Nicolas Blanchemain; Bernard Martel
The aim of the study was to develop a polyester visceral implant modified with a cyclodextrin polymer for the local and prolonged delivery of ropivacaine to reduce post operatory pain. Therefore, we applied a coating of an inguinal mesh with a crosslinked polymer of hydroxypropyl-β-cyclodextrin (HPβCD) whose specific host-guest complex forming properties were expected to improve the adsorption capacity of the implant toward anesthetic, and then to release it within a sustained period. The modification reaction of the textile with cyclodextrin was explored through the study of the influence of the pad/dry/cure process parameters and the resulting implant (PET-CD) was characterized by solid state NMR and SEM. Besides, the inclusion complex between ropivacaine and CD was studied by NMR and capillary electrophoresis in PBS medium. Finally, ropivacaine sorption test showed that a maximum of 30 mg/g of ropivacaine could be adsorbed on the functionalized samples. In dynamic batch tests in PBS at pH 7.4, the release could be observed up to 6h. The cytocompatibility of the PET-CD loaded with ropivacaine was also studied and reached 65% cell vitality after 6 days.
International Journal of Pharmaceutics | 2014
Mariam Taha; Feng Chai; Nicolas Blanchemain; Christel Neut; Michel Goube; Mickael Maton; Bernard Martel; Hartmut F. Hildebrand
Infection still present as one of common complications after total hip replacement (∼2.5%), which may cause serious outcomes. For preventing such risk, loading antibiotics onto implants for increasing local drug concentration at targeted sites could be a solution. This study aims at modifying the surface of hydroxyapatite (HA) coated titanium hip implant material (Ti-HA) with polymer of cyclodextrin (polyCD) for loading antibiotics, to achieve a sustained local drug delivery. Two widely applied antibiotics (tobramycin and rifampicin) in orthopedic surgery were loaded alone or in combination. The drug adsorption isotherm, drug release kinetics and drugs efficacy were thoroughly investigated. The results proved that polyCD coating significantly improved the affinity of both drugs to Ti-HA surface, while the mechanism of drug-polyCD interaction varies from the nature of drug, courtesy of the structural complex of polyCD. The advantage of dual-drug loading was highlighted by its strong efficacy against both Staphylococcus aureus and Enterobacter cloacae, which overcomes the limitation of mono-drug loading for an effective treatment against both bacterial strains. The prolonged antibacterial activity of antibiotic loaded Ti-HA-polyCD samples confirmed that polyCD could be a promising drug-delivery system, for sustained antibiotics release or other potential applications e.g., antimitotic agent release.
Journal of Biomedical Materials Research Part A | 2016
Jatupol Junthip; Nicolas Tabary; Feng Chai; Laurent Leclercq; Mickael Maton; Frédéric Cazaux; Christel Neut; Laurent Paccou; Yannick Guinet; Jean-Noel Staelens; Marc Bria; David Landy; Alain Hédoux; Nicolas Blanchemain; Bernard Martel
The coating of a nonwoven textile by polyelectrolyte multilayer film (PEM) issued from cationic and anionic β-cyclodextrin (βCD) polyelectrolytes according to the layer-by-layer (LbL) technique was successfully attempted. The tert-butyl benzoic acid (TBBA) was used as drug model to evaluate the loading capacity and sustained release properties of this PEM system. The build-up of the multilayer assembly was monitored in situ by optical waveguide lightmode spectroscopy (OWLS) on the one hand, and was assessed by gravimetry on the other hand when applied onto the textile substrate. In parallel, the complexation study of TBBA with both CD polyelectrolytes was also investigated by nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC). The influence of thermal crosslinking of the multilayered coating on its stability and on TBBA release kinetics in phosphate buffered saline (PBS) at 37°C was studied. Finally, biological and microbiological tests were performed to investigate the cytocompatibility and the intrisic antibacterial activity of multilayer assemblies.
International Journal of Pharmaceutics | 2016
Safa Ouerghemmi; Stéphanie Degoutin; Nicolas Tabary; Frédéric Cazaux; Mickael Maton; Valérie Gaucher; Ludovic Janus; Christel Neut; Feng Chai; Nicolas Blanchemain; Bernard Martel
This work focuses on the relevance of antibacterial nanofibers based on a polyelectrolyte complex formed between positively charged chitosan (CHT) and an anionic hydroxypropyl betacyclodextrin (CD)-citric acid polymer (PCD) complexing triclosan (TCL). The study of PCD/TCL inclusion complex and its release in dynamic conditions, a cytocompatibility study, and finally the antibacterial activity assessment were studied. The fibers were obtained by electrospinning a solution containing chitosan mixed with PCD/TCL inclusion complex. CHT/TCL and CHT-CD/TCL were also prepared as control samples. The TCL loaded nanofibers were analyzed by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD). Nanofibers stability and swelling behavior in aqueous medium were pH and CHT:PCD weight ratio dependent. Such results confirmed that CHT and PCD interacted through ionic interactions, forming a polyelectrolyte complex. A high PCD content in addition to a thermal post treatment at 90°C were necessary to reach a nanofibers stability during 15days in soft acidic conditions, at pH=5.5. In dynamic conditions (USP IV system), a prolonged release of TCL with a reduced burst effect was observed on CHT-PCD polyelectrolyte complex based fibers compared to CHT-CD nanofibers. These results were confirmed by a microbiology study showing prolonged antibacterial activity of the nanofibers against Escherichia coli and Staphylococcus aureus. Such results could be explained by the fact that the stability of the polyelectrolyte CHT-PCD complex in the nanofibers matrix prevented the diffusion of the PCD/triclosan inclusion complex in the supernatant, on the contrary of the similar system including cyclodextrin in its monomeric form.
Atherosclerosis | 2013
Blandine Maurel; Feng Chai; Mickael Maton; Nicolas Blanchemain; Stephan Haulon
OBJECTIVE After stent implantation, platelet aggregation and thrombus formation are thought to play a key role in the early phase of in-stent restenosis (ISR). Drug-eluting stents have reduced ISR, but are associated with healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. EP224283 is a new dual-action antithrombotic molecule combining a GPIIbIIIa antagonist and a factor Xa inhibitor. We investigated its efficacy on restenosis in a rat model of ISR and on platelet adhesion. METHODS AND RESULTS Rat aortas were stented and the animals received either EP224283 or vehicle subcutaneously every 48 h. At day 7 and day 28 after surgery, the stented aortas were removed and processed for morphometric analysis or protein analysis. At day 28, EP224283 significantly reduced neointima growth (in the range of 20%). Protein analysis revealed that EP224283 reduced cell proliferation pathways: ERK1/2 and Akt were down-regulated and p38 up-regulated. Expression of Ki67 was also reduced. In vitro assessment depicted a reduction of platelet activation and platelet adhesion among treated rats. CONCLUSION These results show a beneficial effect of EP224283 on in-stent restenosis and on stent thrombogenicity that may improve results after stent implantation. Further investigations are required to assess the efficacy of a local delivery of EP224283 on both acute thrombosis and ISR.
Acta Biomaterialia | 2017
Guillaume Vermet; Stéphanie Degoutin; Feng Chai; Mickael Maton; Claudia Flores; Christel Neut; P.E. Danjou; Bernard Martel; Nicolas Blanchemain
The use of textile meshes in hernia repair is widespread in visceral surgery. Though, mesh infection is a complication that may prolong the patient recovery period and consequently presents an impact on public health economy. Such concern can be avoided thanks to a local and extended antibiotic release on the operative site. In recent developments, poly-l-lactic acid (PLLA) has been used in complement of polyethyleneterephthalate (Dacron®) (PET) or polypropylene (PP) yarns in the manufacture of semi-resorbable parietal implants. The goal of the present study consisted in assigning drug reservoir properties and prolonged antibacterial effect to a 100% PLLA knit through its functionalization with a cyclodextrin polymer (polyCD) and activation with ciprofloxacin. The study focused i) on the control of degree of polyCD functionalization of the PLLA support and on its physical and biological characterization by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and cell viability, ii) on the understanding of drug/meshes interaction using mathematic model and iii) on the correlation between drug release studies in phosphate buffer saline (PBS) and microbiological evaluation of meshes and release medium against E. coli and S. aureus. All above mentioned tests highlighted the contribution of polyCD on the improved performances of the resulting antibacterial implantable material. STATEMENT OF SIGNIFICANCE 1. We managed for the first time, with well-defined parameters in terms of temperature and time of treatment, to functionalize a bio-absorbable synthetic material to improve drug sorption and drug release properties without affecting its mechanical properties. 2. We analyzed for the first time the degradation of our coating products by mass spectroscopy to show that only citrate and cyclodextrin residues (and glucose units) without any cytotoxicity are formed. 3. We managed to improve the mechanical properties of the PLA with the cyclodextrin polymer to form a composite. The assembly (cyclodextrin polymer and PLLA) remains biodegradable.
Annals of Vascular Surgery | 2015
B. Maurel; Christophe Sarraf; Farid Bakir; Feng Chai; Mickael Maton; Jonathan Sobocinski; Adrien Hertault; Nicolas Blanchemain; Stéphan Haulon; Patrick Lermusiaux
BACKGROUND In-stent restenosis (ISR) remains a major public health concern associated with an increased morbidity, mortality, and health-related costs. Drug-eluting stents (DES) have reduced ISR, but generate healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Assessments of new DES are based on animal models or in vitro release systems, which have several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, replicating ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. METHODS This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The main pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure, and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. RESULTS A first feasibility experience was performed over a 24-day period. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium changed every 3 days, and with a circulating systolic and diastolic flux during the entire experimentation. There was no infection and no leak. At the end of the experimentation, a morphometric analysis was performed confirming the viability of the arteries. CONCLUSIONS We designed and patented an original hemodynamic ex vivo model to further study new DES, as well as a wide range of vascular diseases and medical devices. This bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another major benefit will be the reduction of animal experimentation and the opportunity to test new DES or other vascular therapeutics in human tissues (human infrapopliteal or coronary arteries collected during human donation).
PLOS ONE | 2018
Morgane Masse; Mickael Maton; Stéphanie Genay; Nicolas Blanchemain; Christine Barthélémy; Bertrand Décaudin; Pascal Odou
Insulin is a frequently prescribed drug in hospitals and is usually administered by syringe pumps with an extension line which can be made of various materials. Two insulin solutions were studied: an insulin analogue, Novorapid® which contains insulin aspart and two phenolic preservatives (e.g. phenol and metacresol) and Umuline rapide® with human insulin and metacresol as preservative. Some studies have indicated interactions between insulin, polyvinyl chloride (PVC) and polyethylene (PE). The aim of this work was to study such interactions between Novorapid® or Umuline rapide® and infusion extension line materials (PVC, PE and coextruded (PE/PVC)). Insulin solution at 1 IU/mL was infused at 2 mL/h over 24 hours with 16 different extension lines (8 in PVC, 3 in PE and 5 in PE/PVC). Ultra-Fast Liquid Chromatography with diode array detection (UFLC-DAD) was performed to quantify insulin (human and aspart) and preservatives (metacresol and phenol). Limited human insulin sorption was observed thirty minutes after the onset of infusion: 24.3 ± 12.9%, 3.1 ± 1.6% and 18.6 ± 10.0% for PVC, PE and PE/PVC respectively. With insulin aspart, sorption of about 5% was observed at the onset of infusion for all materials. However, there were interactions between phenol and especially metacresol with PVC, but no interactions with PE and PE/PVC. This study shows that insulin interacts with PVC, PE and PE/PVC at the onset of infusion. It also demonstrates that insulin preservatives interact with PVC, which may result in problems of insulin conservation and conformation. Some more studies are required to understand the clinical impact of the latter during infusion.
Journal of Infection | 2014
Elix ene Jean-Baptiste; Nicolas Blanchemain; Christel Neut; Feng Chai; Mickael Maton; Bernard Martel; Hartmut F. Hildebrand; S. Haulon
Lwt - Food Science and Technology | 2016
C. Birck; Stéphanie Degoutin; Mickael Maton; Christel Neut; Marc Bria; M. Moreau; F. Fricoteaux; V. Miri; Maryse Bacquet