Miguel Ángel González-Curbelo
University of La Laguna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Ángel González-Curbelo.
Analytica Chimica Acta | 2012
Antonio V. Herrera-Herrera; Miguel Ángel González-Curbelo; Javier Hernández-Borges; Miguel Ángel Rodríguez-Delgado
Due to the intensive and multidisciplinary research carried out during the last two decades on carbon nanotubes (CNTs), the scientific community understands nowadays much better the chemistry, structure and properties of these interesting materials. In fact, they have found their particular place in a wide number of application fields (nanotechnology, electronics, optics, medicine, etc.) among which Analytical Chemistry is becoming more and more important. The aim of this review is to provide an updated report of the most recent manuscripts (years 2009-2011) regarding the use of CNTs in Separation Science. In particular, the use of CNTs as solid-phase extraction and microextraction sorbents, as part of membranes as well as their use in chromatography and electrophoresis will be discussed and commented. Besides, although not as fully related to Separation Science as the previous techniques, the use of CNTs as laser desorption/ionization substrates has also been considered because of its importance in the field.
Journal of Chromatography A | 2011
María Asensio-Ramos; Lidia M. Ravelo-Pérez; Miguel Ángel González-Curbelo; Javier Hernández-Borges
Over the last years, liquid-phase microextraction (LPME) in its different application modes (single drop microextraction, dispersive liquid-liquid microextraction and hollow fiber-LPME) has been increasingly applied for the extraction of both inorganic and organic analytes from different matrices. Its advantages over conventional extraction procedures (simplicity, effectiveness, rapidity and low consumption of organic solvents) has also attracted its application in the complex food analysis field, in which it has clearly provided good and challenging results. A comprehensive review dealing with those articles published since its introduction till the end of March 2011 is presented, offering also a critical vision of the analytical potential of LPME for the analysis of foods.
Journal of Separation Science | 2013
Miguel Ángel González-Curbelo; Antonio V. Herrera-Herrera; Javier Hernández-Borges; Miguel Ángel Rodríguez-Delgado
In this manuscript, a dispersive SPE method based on the use of multiwalled carbon nanotubes has been developed for the determination of 15 organophosphorus pesticides residues including some of their metabolites (disulfoton sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, malaoxon, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos, terbufos sulfone, disulfoton sulfone, and fensulfothion) from real environmental waters (run-off, mineral and tap water) by GC with nitrogen phosphorus detection. Factors that affect the enrichment efficiency such as sample volume, multiwalled carbon nanotubes amount, and volume of eluent were studied. The optimized method was validated in terms of matrix-matched calibration, recovery, precision, and accuracy for the three analyzed samples. In this last case, the developed Students t test demonstrated that there were no significant differences between real and spiked concentrations. Optimum dispersive SPE conditions (extraction of 200 mL of water, pH 6.0, with 130 mg of multiwalled carbon nanotubes, elution with 25 mL of dichloromethane for run-off and tap water and 30 mL for mineral water) allowed the quantitative extraction of analytes at levels lower than the maximum residues limits legislated by the European Union, with LODs between 1.16 and 93.6 ng/L. Absolute recovery values achieved were in the range of 67-107% (RSD values <10.1%).
Journal of Chromatography A | 2013
Miguel Ángel González-Curbelo; Javier Hernández-Borges; Teresa M. Borges-Miquel; Miguel Ángel Rodríguez-Delgado
A new method based on hollow-fiber liquid-phase microextraction (HF-LPME) has been developed for the determination of a group of organophosphorus pesticides, including some of their metabolites, in two commercial cereal-based baby foods and one wheat flour prior to gas chromatography-nitrogen phosphorus detection. Samples were first extracted by ultrasound-assisted extraction with acetonitrile (ACN) containing 1.25% (v/v) of formic acid. After evaporation and reconstitution in Milli-Q water, the HF-LPME procedure, using 1-octanol as extraction solvent, was applied followed by a desorption step in ACN, which clearly improved the performance of the technique. The effects of sample pH, ionic strength, stirring rate, extraction temperature and time as well as the desorption procedure were investigated. Under the optimum conditions that involved the extraction of the analytes from 10 mL of the water reconstituted extract at pH 7.0 containing 5% (w/v) of NaCl for 45 min at 960 rpm, the method was validated in terms of linearity, precision and accuracy. The limits of detection (LODs) were between 0.29 and 3.20 μg/kg. The extraction of Milli-Q water, as an example of the applicability of the procedure to aqueous samples, allowed achieving LODs in the range 0.01-0.04 μg/L. Such values, together with the ones achieved for the rest of the samples, are below or equal to the maximum residue limits specified by the European Union.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2012
Miguel Ángel González-Curbelo; Javier Hernández-Borges; Teresa M. Borges-Miquel; Miguel Ángel Rodríguez-Delgado
Fifteen pesticides including some of their metabolites (disulfoton sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, malaoxon, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos, terbufos sulfone, disulfoton sulfone and fensulfothion) were analysed in milled toasted wheat and maize as well as in wheat flour and baby cereals. The QuEChERS (quick, easy, cheap, effective, rugged and safe) methodology was used and its dispersive solid-phase extraction procedure was optimised by means of an experimental design with the aim of reducing the amount of co-extracted lipids and obtaining a clean extract. Gas chromatography with nitrogen phosphorus detection were used as the separation and detection techniques, respectively. The method was validated in terms of selectivity, recoveries, calibration, precision and accuracy as well as matrix effects. Limits of detection were between 0.07 and 34.8 µg kg−1 with recoveries in the range of 71–110% (relative standard deviations were below 9%). A total of 40 samples of different origin were analysed. Residues of pirimiphos-methyl were found in six of the samples at concentrations in the range 0.08–0.47 mg kg−1, which were below the MRLs established for this pesticide in cereal grains. Tandem mass spectrometry confirmation was also carried out in order to identify unequivocally the presence of this pesticide.
Journal of Separation Science | 2012
Miguel Ángel González-Curbelo; Samara Dionis-Delgado; María Asensio-Ramos; Javier Hernández-Borges
Analytical potentiality of a modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method has been studied and validated for the extraction of a group of 11 pesticides (ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos and fensulfothion) and some of their metabolites (malaoxon, disulfoton sulfoxide, terbufos sulfone and disulfoton sulfone) in toasted barley and chickpea flours. The method involves separation and quantification by gas chromatography (GC) with nitrogen phosphorus detection (NPD) using triphenylphosphate as the internal standard. Matrix-matched calibration was carried out for both flours due to the existence of a matrix effect. Linearity, recovery, precision and accuracy studies of the proposed QuEChERS-GC-NPD method were evaluated in each sample matrix. Mean recovery values were in the range of 73-118% with relative standard deviation values below 10%. Limits of detection of the whole method were between 0.07 and 57.39 μg/kg. The method was finally applied for the analysis of 14 samples collected in different zones of the Tenerife island. The residues of pirimiphos-methyl were found in 13 of them, confirming its unequivocal presence by mass spectrometry.
Food Chemistry | 2017
Miguel Ángel González-Curbelo; Bárbara Socas-Rodríguez; Miguel Herrero; Antonio V. Herrera-Herrera; Javier Hernández-Borges
The dissipation/degradation of the pesticides dimethoate, terbufos, disulfoton, and pirimiphos-methyl were evaluated in milled toasted maize and wheat flour (gofio) during three months of storage. Their dissipation kinetics and residual levels were determined, as well as their possible decomposition into some of their main transformation products (disulfoton sulfoxide, terbufos sulfone and disulfoton sulfone). For this purpose, pesticide-free milled toasted maize and wheat samples were spiked with the pesticides, and they were then stored in the darkness at ambient temperature in a closed container to simulate current storage conditions of such packed food. A multiresidue analysis based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was performed for the simultaneous determination of these pesticides and their metabolites. After three months of storage, the dissipation of residues ranged between 34% (pirimiphos-methyl) and 86% (disulfoton) for maize gofio and between 69% (terbufos) and 92% (disulfoton and pirimiphos-methyl) for wheat gofio. The results demonstrated that the degradation was slower in gofio than in wheat gofio and that none of the selected metabolites were detected in any of the samples. Dissipation curves of all studied pesticides fitted to a first-order decay curve in both types of cereals.
Electrophoresis | 2017
Miguel Ángel González-Curbelo; Diana Angélica Varela-Martínez; Bárbara Socas-Rodríguez; Javier Hernández-Borges
Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal‐organic frameworks, magnetic and non‐magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010–2017).
Trends in Analytical Chemistry | 2015
Miguel Ángel González-Curbelo; Bárbara Socas-Rodríguez; Antonio V. Herrera-Herrera; Javier González-Sálamo; Javier Hernández-Borges; Miguel Ángel Rodríguez-Delgado
Journal of Chromatography A | 2014
Miguel Ángel González-Curbelo; Steven J. Lehotay; Javier Hernández-Borges; Miguel Ángel Rodríguez-Delgado