Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Laitinen is active.

Publication


Featured researches published by Mika Laitinen.


Nature Genetics | 2000

Mutations in an oocyte-derived growth factor gene ( BMP15 ) cause increased ovulation rate and infertility in a dosage-sensitive manner

Susan M. Galloway; Kenneth P. McNatty; Lisa Cambridge; Mika Laitinen; Jennifer L. Juengel; T. Sakari Jokiranta; Robert J. McLaren; Kaisu Luiro; K. G. Dodds; Grant W. Montgomery; Anne E. Beattie; George H. Davis; Olli Ritvos

Multiple ovulations are uncommon in humans, cattle and many breeds of sheep. Pituitary gonadotrophins and as yet unidentified ovarian factors precisely regulate follicular development so that, normally, only one follicle is selected to ovulate. The Inverdale (FecXI) sheep, however, carries a naturally occurring X-linked mutation that causes increased ovulation rate and twin and triplet births in heterozygotes (FecXI/FecX+; ref. 1), but primary ovarian failure in homozygotes (FecXI/FecXI; ref. 2). Germ-cell development, formation of the follicle and the earliest stages of follicular growth are normal in FecXI/FecXI sheep, but follicular development beyond the primary stage is impaired. A second family unrelated to the Inverdale sheep also has the same X-linked phenotype (Hanna, FecXH). Crossing FecXI with FecXH animals produces FecXI/FecXH infertile females phenotypically indistinguishable from FecXI/FecXI females. We report here that the FecXI locus maps to an orthologous chromosomal region syntenic to human Xp11.2–11.4, which contains BMP15, encoding bone morphogenetic protein 15 (also known as growth differentiation factor 9B (GDF9B)). Whereas BMP15 is a member of the transforming growth factor β (TGFβ) superfamily and is specifically expressed in oocytes, its function is unknown. We show that independent germline point mutations exist in FecXI and FecXH carriers. These findings establish that BMP15 is essential for female fertility and that natural mutations in an ovary-derived factor can cause both increased ovulation rate and infertility phenotypes in a dosage-sensitive manner.


Biology of Reproduction | 2002

Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 Are Essential for Ovarian Follicular Development in Sheep

Jennifer L. Juengel; N. L. Hudson; Derek A. Heath; Peter Smith; Karen L. Reader; Steve Lawrence; Anne R. O'Connell; Mika Laitinen; Mark Cranfield; Nigel P. Groome; Olli Ritvos; Kenneth P. McNatty

Abstract The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9–10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., ∼7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1–2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.


Mechanisms of Development | 1998

A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis.

Mika Laitinen; Kaisa Vuojolainen; Risto Jaatinen; Ilkka Ketola; Johanna Aaltonen; Eero Lehtonen; Markku Heikinheimo; Olli Ritvos

Growth differentiation factor-9 (GDF-9) is a transforming growth factor-b (TGF-b) family member which is expressed in the oocytes in mouse ovaries (McGrath, S.A., Esquela, A.F., Lee, S.J., 1995. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9, 131-136). GDF-9 is indispensable for normal folliculogenesis since female mice deficient for the GDF-9 gene are infertile due to an arrest of follicular growth at the primary follicle stage (Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R. , Lu, N., Matzuk, M.M., 1996. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531-535). We searched the GenBank Expressed Sequence Tag (EST) database with the mouse GDF-9 cDNA sequence, and identified from a mouse 2-cell embryo library an EST cDNA that encodes a putative member of the TGF-b superfamily, and named it as GDF-9B. Northern blot hybridization analyses of mouse ovaries revealed a single transcript of approximately 4.0 kilobases (kb) for GDF-9B and of 2.0 kb for GDF-9. We cloned by reverse transcription-polymerase chain reaction from mouse ovarian RNA a partial 821-base pair GDF-9B cDNA that spans the sequence encoding the putative mature region of GDF-9B. The COOH-terminal region of GDF-9B appears to be 53% homologous to GDF-9. Moreover, like GDF-9, GDF-9B lacks the cysteine residue needed for the covalent dimerization of several TGF-b family members. Using in situ hybridization analysis, we demonstrate that GDF-9B and GDF-9 mRNAs are co-localized in the oocyte. We also show that GDF-9B and GDF-9 genes are co-ordinately expressed during follicular development.


Endocrinology | 1997

Differential Hormonal Regulation of Vascular Endothelial Growth Factors VEGF, VEGF-B, and VEGF-C Messenger Ribonucleic Acid Levels in Cultured Human Granulosa-Luteal Cells1

Mika Laitinen; Ari Ristimäki; Mari Honkasalo; Kirsi Narko; Karri Paavonen; Olli Ritvos

The development of ovarian follicles and subsequent corpus luteum formation is accompanied by very active angiogenesis. Ovarian granulosa cells produce vascular endothelial growth factor (VEGF), which is a potent endothelial cell mitogen and an angiogenic agent. The complementary DNAs of two other factors structurally related to VEGF, namely VEGF-B and VEGF-C, were recently cloned, but little is known of their regulation in the ovary. We first studied the expression of the messenger RNAs (mRNAs) of the three VEGF isotypes in freshly isolated human granulosa-luteal (GL) cells obtained at oocyte retrieval for in vitro fertilization. The hormonal regulation of these mRNAs was subsequently studied in primary cultures of human GL cells. Analysis of cultured GL cell RNA by reverse transcription-PCR revealed that these cells express the alternatively spliced transcripts representing 121-, 145-, and 165-amino acid VEGF isoforms. Northern blot hybridization analyses indicated that transcripts of 4.5 and 3.7 kiloba...


Molecular and Cellular Endocrinology | 1999

Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B

Risto Jaatinen; Mika Laitinen; Kaisa Vuojolainen; Johanna Aaltonen; Henna Louhio; Kristiina Heikinheimo; Eero Lehtonen; Olli Ritvos

Although targeted gene disruption of GDF-9, an oocyte derived growth factor, leads to an arrest of folliculogenesis and causes infertility in female mice, little is known on the expression of GDF-9 protein in the ovary. We show that GDF-9 protein is expressed in rat oocytes during folliculogenesis from the early primary follicle stage onwards but the most intensive immunostaining was seen in primary and preantral follicles. Northern blot analyses of the ontogeny of GDF-9 gene expression in postnatal rat ovaries showed that the GDF-9 transcript levels are clearly increased on the second postnatal day concomitant with the appearance of primary follicles. Interestingly, Northern blot and in situ hybridization analyses indicate a similar expression pattern for GDF-9B, the rat ortholog of a mouse GDF-9 like factor for which we recently reported the partial amino acid sequence. The polypeptide sequences deduced from isolated ovarian cDNAs indicate that the rat GDF-9 prepropeptide is 440 amino acids (aa) in length and the putative mature peptide is 135 aa whereas rat GDF-9B is 391 aa long and the mature region is 125 aa. We conclude that (1) the GDF-9 protein is highly expressed in the oocytes of primary follicles of rat ovaries suggesting that it plays a role mainly in early folliculogenesis and that (2) the full-length polypeptide sequence of GDF-9B suggests that this novel TGF-beta family member is likely to be a secreted growth factor that may regulate folliculogenesis at similar developmental stages as GDF-9.


Molecular and Cellular Endocrinology | 2005

Oocyte-expressed genes affecting ovulation rate

Kenneth P. McNatty; Peter Smith; L G Moore; Karen L. Reader; Stanley Lun; J.P. Hanrahan; Nigel P. Groome; Mika Laitinen; Olli Ritvos; Jenny Juengel

From examination of inherited patterns of ovulation rate in sheep, several breeds have been identified with point mutations in two growth factor genes (BMP15 and GDF9) and a related receptor (ALK6) that are expressed in oocytes. Five different point mutations have been identified in the BMP15 gene, one in GDF9 and one in ALK6. Animals heterozygous for these mutations or heterozygous for two of these mutations or homozygous for the ALK6 mutation have higher ovulation rates (i.e. +0.6-10) than their wild-type contemporaries. Animals homozygous for the BMP15 or GDF9 mutations are sterile due to arrested follicular development from the primary stage of growth. The BMP15 and GDF9 mutations are thought to result in reduced levels of mature protein or altered binding to cell-surface receptors. In sheep, GDF9 mRNA is present in germ cells before and after ovarian follicular formation as well as throughout follicular growth, whereas BMP15 mRNA is found in oocytes only from the primary stage of growth. Also ALK6 together with related cell-surface receptors such as ALK5 and BMPRII mRNA are present in oocytes at most, if not all, stages of follicular growth. Both GDF9 and BMP15 proteins are present in follicular fluid indicating that they are secreted products. Immunisation of sheep with GDF9 or BMP15 peptides shows that both growth factors are essential for follicular development, ovulation and/or corpus luteum formation. In animals with the ALK6 mutation, ovarian follicles undergo precocious maturation leading to three to seven follicles ovulating at smaller diameters without any increase above wild-types in the ovarian secretions of steroid or inhibin. One important consequence of the ALK6 mutation appears to be a decreased ability of some BMPs to inhibit differentiation of follicular cells. Current findings in sheep suggest that BMP15, GDF9 and ALK6 are targets for new methods of fertility regulation in some mammals.


Laboratory Investigation | 2001

Comparison of serous and mucinous ovarian carcinomas : Distinct pattern of allelic loss at distal 8p and expression of transcription factor GATA-4

Heini Lassus; Mika Laitinen; Mikko Anttonen; Markku Heikinheimo; Lauri A. Aaltonen; Olli Ritvos; Ralf Bützow

Using comparative genomic hybridization (CGH), we have previously demonstrated frequent loss of 8p, especially its distal part, in ovarian carcinoma. To compare the deletion map of distal 8p in serous and mucinous ovarian carcinomas, we performed allelic analysis with 18 polymorphic microsatellite markers at 8p21–p23. In serous carcinoma, loss of heterozygosity (LOH) was detected in 67% of the samples, and the majority of the carcinomas showed loss of all or most of the informative markers. In contrast, only 21% of mucinous carcinomas showed allelic loss, with only one or two loci showing LOH in each sample. In serous carcinomas, LOH was associated with higher grade tumors. Three distinct minimal common regions of loss could be defined in serous carcinomas (at 8p21.1, 8p22–p23.1, and 8p23.1). Expression of a transcription factor gene, GATA4, located at one of these regions (8p23.1) was studied in serous and mucinous ovarian carcinomas by Northern blotting and immunohistochemical staining of tumor microarray. Expression was found to be lost in most serous carcinomas but retained in the majority of mucinous carcinomas. Our results suggest distinct pathogenetic pathways in serous and mucinous ovarian carcinomas and the presence of more than one tumor suppressor gene at 8p involved in the tumorigenesis of serous carcinoma.


Molecular and Cellular Endocrinology | 2008

Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells

David G. Mottershead; Minna M. Pulkki; Pranuthi Muggalla; Arja Pasternack; Minna Tolonen; Samu Myllymaa; Olexandr Korchynskyi; Yoshihiro Nishi; Toshihiko Yanase; Stan Lun; Jennifer L. Juengel; Mika Laitinen; Olli Ritvos

Growth differentiation factor-9 (GDF9) is an oocyte secreted paracrine factor essential for mammalian ovarian folliculogenesis. Like other members of the transforming growth factor-beta (TGFbeta) superfamily, GDF9 is synthesized as a prepropeptide which needs processing by furin-like proteases to result in an active mature protein. We have previously characterized a preparation of unpurified recombinant mouse GDF9 which is bioactive as produced by human embryonic kidney 293T (HEK-293T) cells. However, we find that unpurified recombinant human GDF9 (hGDF9) produced by HEK-293T cells is not bioactive. Purified recombinant hGDF9 is bioactive and here we report the characterization of this protein. We find that the purified untagged mature region of hGDF9 is active in transcriptional reporter assays specific for Smad3/4 in human granulosa-luteal (hGL) cells. We also demonstrate the use of a BMP (Smad1/5) responsive (BRE-luciferase) adenovirus in primary cultures of hGL cells to detect BMP responses. Using this adenovirus we find that purified human GDF9 does not activate the Smad1/5 pathway. Purified hGDF9 mature region activated the Smad3 pathway also in the FSH responsive human granulosa tumor cell line KGN. Primary cultures of rat granulosa cells responded to purified hGDF9 with an increase in DNA synthesis as measured by [3H]-thymidine uptake. Here we also report that the inclusion of a C-terminal affinity purification tag destroys GDF9 bioactivity. This study is the first characterization of purified biologically active human GDF9 and as such is of importance for studies on human fertility, and efforts aimed at treating infertility conditions.


Endocrinology | 2012

A Covalently Dimerized Recombinant Human Bone Morphogenetic Protein-15 Variant Identifies Bone Morphogenetic Protein Receptor Type 1B as a Key Cell Surface Receptor on Ovarian Granulosa Cells

Minna M. Pulkki; David G. Mottershead; Arja Pasternack; Pranuthi Muggalla; Helen Ludlow; Maarten van Dinther; Samu Myllymaa; Katri Koli; Peter ten Dijke; Mika Laitinen; Olli Ritvos

Genetic studies have identified bone morphogenetic protein-15 (BMP15) as an essential regulator of female fertility in humans and in sheep. Oocyte-derived BMP15 is a noncovalently linked dimeric growth factor mediating its effects to ovarian somatic cells in a paracrine manner. Although receptor ectodomains capable of binding BMP15 have previously been reported, no cell surface receptor complex involved in BMP15 signaling has previously been characterized. Here we have expressed and purified recombinant human BMP15 noncovalent and covalent dimer variants. The biological effects of these BMP15 variants were assessed in cultured human granulosa-luteal cells or COV434 granulosa cell tumor cells using BMP-responsive transcriptional reporter assays and an inhibin B ELISA. Biochemical characterization of ligand-receptor interactions was performed with affinity-labeling experiments using [(125)I]iodinated BMP15 variants. Both ligand variants were shown to form homodimers and to stimulate Smad1/5/8 signaling and inhibin B production in human granulosa cells in a similar manner. [(125)I]Iodination of both ligands was achieved, but only the covalent dimer variant retained receptor binding capacity. The [(125)I]BMP15(S356C) variant bound preferentially to endogenous BMP receptor 1B (BMPR1B) and BMPR2 receptors on COV434 cells. Binding experiments in COS cells with overexpression of these receptors confirmed that the [(125)I]BMP15(S356C) variant binds to BMPR1B and BMPR2 forming the BMP15 signaling complex. The results provide the first direct evidence in any species on the identification of specific cell surface receptors for a member of the GDF9/BMP15 subfamily of oocyte growth factors. The fact that BMP15 uses preferentially BMPR1B as its type I receptor suggests an important role for the BMPR1B receptor in human female fertility. The result is well in line with the demonstration of ovarian failure in a recently reported human subject with a homozygous BMPR1B loss-of-function mutant.


American Journal of Pathology | 1999

Transcription factor GATA-4 is expressed in pediatric yolk sac tumors.

Susanna Siltanen; Mikko Anttonen; Päivi Heikkilä; Naoko Narita; Mika Laitinen; Olli Ritvos; David B. Wilson; Markku Heikinheimo

Yolk sac tumors (YSTs) are malignant tumors that occur in the gonads of children and young adults, and at extragonadal sites in young children. The histological features of YSTs are variable and can be superimposed on other germ cell tumor histologies. Malignant endodermal cells within YSTs express alpha-fetoprotein, which can be detected in tumor tissue or serum. However, additional markers of endoderm differentiation would be beneficial for the classification of these tumors. Transcription factor GATA-4 regulates the differentiation and function of murine yolk sac endoderm, and its expression correlates with proliferation and cell survival in certain tissues. To see whether GATA-4 plays a role in human YSTs, we surveyed its expression in human germ cell tumors and cell lines. Northern analysis demonstrated expression of GATA-4 mRNA in four human germ cell tumor lines exhibiting yolk sac endoderm differentiation. GATA-4 protein was detected in eight of nine pediatric YSTs by immunohistochemistry. Three of five immature teratomas exhibited GATA-4 in neural blastematous cells and in cylindrical epithelium, whereas all 16 mature teratomas were devoid of GATA-4. We conclude that GATA-4 is a clinically useful marker of human YSTs and speculate that it may play a role in the maintenance of the malignant phenotype.

Collaboration


Dive into the Mika Laitinen's collaboration.

Top Co-Authors

Avatar

Olli Ritvos

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nigel P. Groome

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markku Heikinheimo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge