Min-Hsiung Shih
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Min-Hsiung Shih.
Optics Express | 2012
Cheng-Wen Cheng; Mohammed Nadhim Abbas; Chao-Wei Chiu; Kun-Ting Lai; Min-Hsiung Shih; Yia-Chung Chang
Two-dimensional metallic broadband absorbers on a SiO(2)/Ag/Si substrate were experimentally studied. The absorptivity of such structure can be increased by tailoring the ratio of disk size to the unit cell area. The metallic disk exhibits a localized surface plasmon polariton (LSPP) mode for both TE and TM polarizations. A broadband thermal emitter can be realized because the LSPP mode is independent of the periodicities. By manipulating the ratios and disk sizes, a high-performance, wide-angle, polarization-independent dual band absorber was experimentally achieved. The results demonstrated a substantial flexibility in absorber designs for applications in thermal photovoltaics, sensors, and camouflage.
Scientific Reports | 2015
Kevin Lee; Yi-Huan Chen; Hsiang-Yu Lin; Chia-Chin Cheng; Pei-Ying Chen; Ting-Yi Wu; Min-Hsiung Shih; Kung-Hwa Wei; Lain-Jong Li; Chien-Wen Chang
The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.
Nanotechnology | 2012
Hsin-Chu Chen; Kuo-Ju Chen; Chien-Chung Lin; Chao-Hsun Wang; Hau-Vei Han; Hsin-Han Tsai; H. C. Kuo; Shih-Hsuan Chien; Min-Hsiung Shih; Hao-Chung Kuo
The high luminous efficiency and superior uniformity of angular-dependent correlated color temperature (CCT) white light-emitting diodes have been investigated by ZrO₂ nano-particles in a remote phosphor structure. By adding ZrO₂ nano-particles with silicone onto the surface of the phosphor layer, the capability of light scattering could be enhanced. In particular, the intensity of blue light at large angles was increased and the CCT deviations could be reduced. Besides, the luminous flux was improved due to the ZrO₂ nano-particles with silicone providing a suitable refractive index between air and phosphor layers. This novel structure reduces angular-dependent CCT deviations from 1000 to 420 K in the range of -70° to 70°. Moreover, the enhancement of lumen flux was increased by 2.25% at a driving current 120 mA, compared to a conventional remote phosphor structure without ZrO₂ nano-particles. Consequently, the ZrO₂ nano-particles in a remote phosphor structure could not only improve the uniformity of lighting but also increase the light output.
Journal of Lightwave Technology | 2012
Kuo-Ju Chen; Hsin-Chu Chen; Min-Hsiung Shih; Chao-Hsun Wang; M. Y. Kuo; Yi-Chun Yang; Chien-Chung Lin; Hao-Chung Kuo
This study investigates the effect of temperature on CdSe/ZnS quantum dots (QDs) in GaN-based light-emitting diodes (LEDs) using the phosphor conversion efficiency (PCE) and LED junction temperature. In our simulation, the blue chip and CdSe/ZnS QDs temperature are similar because of their minimal thickness. Furthermore, to verify the effect of temperature on CdSe/ZnS QDs, we use continuous wave and pulsed current sources to measure the relationship between the temperature and relative PCE. Higher junction temperatures are observed with greater CdSe/ZnS QD volume in LEDs. This is attributed to the thermal conduction and nonradiative energy between CdSe/ZnS QDs and blue chip. Therefore, if thermal management is improved, CdSe/ZnS QDs are expected to be used as color converting material in LEDs.
Optics Express | 2014
Bing-Cheng Lin; Kuo-Ju Chen; Chao-Hsun Wang; Ching-Hsueh Chiu; Yu-Pin Lan; Chien-Chung Lin; Po-Tsung Lee; Min-Hsiung Shih; Yen-Kuang Kuo; Hao-Chung Kuo
A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.
Applied Physics Letters | 2011
Mohammed Nadhim Abbas; Cheng-Wen Cheng; Yia-Chung Chang; Min-Hsiung Shih; Hung-Hsin Chen; Si-Chen Lee
It is shown that the metallic disk structure can be used as an efficient narrow-band thermal emitter in the IR region. The absorption spectra of such structure are investigated both theoretically and experimentally. Calculations of thermal radiation properties of the metallic disk show that the metallic disk is a perfect emitter at a specific wavelength, which can be tuned by varying the diameter of the disk. The metallic disk exhibits only one significant localized surface plasmon polariton (LSPP) mode for both TM and TE polarizations simultaneously. The LSPP mode can be tuned by either varying the disk diameter or the spacer (made of SiO2).
Optics Express | 2012
M. Y. Kuo; J.Y. Hsing; Tien-Lung Chiu; C. N. Li; W. T. Kuo; T. S. Lay; Min-Hsiung Shih
This work demonstrated a-Si:H thin-film solar cells with backside TiO(2)/ SiO(2) distributed Bragg reflectors (DBRs) for applications involving building-integrated photovoltaics (BIPVs). Selectively transparent solar cells are formed by adjusting the positions of the DBR stop bands to allow the transmission of certain parts of light through the solar cells. Measurement and simulation results indicate that the transmission of blue light (430 ~500 nm) with the combination of three DBR mirrors has the highest increase in conversion efficiency.
Journal of Lightwave Technology | 2013
Kuo-Ju Chen; Hsin-Chu Chen; Min-Hsiung Shih; Chao-Hsun Wang; Hsin-Han Tsai; Shih-Hsuan Chien; Chien-Chung Lin; Hao-Chung Kuo
This study demonstrates how the insertion of a thin silicone layer into a dual-layer remote phosphor structure enhances light extraction in white light-emitting diodes (WLEDs). In the experiment, a dual-layer phosphor structure yielded a higher intensity of blue and yellow components than a conventional structure. Moreover, the lumen flux was 5% higher than a conventional remote phosphor package at the same correlated color temperature (CCT). Using a TFCalc32 simulation, the electric field intensity was calculated for different thicknesses of the dual-layer remote phosphor structures, and the enhanced use of blue rays was verified. Additionally, the dual-layer structure reduces chromaticity deviations as the driving current increases.
IEEE\/OSA Journal of Display Technology | 2013
Kuo-Ju Chen; Hsin-Chu Chen; Chien-Chung Lin; Chao-Hsun Wang; Chia-Chi Yeh; Hsin-Han Tsai; Shih-Hsuan Chien; Min-Hsiung Shih; Hao-Chung Kuo
An effective emission model of phosphor film is proposed by using bidirectional scattering distribution function system (BSDF), and the model is verified by white light-emitting diodes (LEDs) with conformal and remote phosphor structure. The emission model is built to clarify the optical characteristics by analyzing the angular-dependent distribution of emission and excitation behaviors in phosphor film. The white LEDs with conformal and remote phosphor structure are also fabricated for experimental comparison. The uniformity of angular correlated color temperature (CCT) in white LEDs can be determined by the angular distribution of blue and yellow light, which is in turns decided by the refractive index variation between chip a©nd phosphor layers. Finally, the experimental results are found to have good agreement with the simulation results performing by the Monte Carlo method.
Scientific Reports | 2016
Chih-Hsien Cheng; An-Jye Tzou; Jung-Hung Chang; Yu-Chieh Chi; Yung-Hsiang Lin; Min-Hsiung Shih; Chao-Kuei Lee; Chih-I Wu; Hao-Chung Kuo; Chun Yen Chang; Gong-Ru Lin
The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC1−x) buffer is demonstrated. The a-SixC1−x buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC1−x buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC1−x buffer. The C-rich SixC1−x favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC1−x buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC1−x buffer, the device deposited on C-rich SixC1−x buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively.