Miodrag Stevanovic
Potsdam Institute for Climate Impact Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miodrag Stevanovic.
Nature Communications | 2014
Benjamin Leon Bodirsky; Alexander Popp; Hermann Lotze-Campen; Jan Philipp Dietrich; Susanne Rolinski; Isabelle Weindl; Christoph Schmitz; Christoph Müller; Markus Bonsch; Anne Biewald; Miodrag Stevanovic
Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.
Environmental Research Letters | 2014
Alexander Popp; Jan Philipp Dietrich; David Klein; Hermann Lotze-Campen; Markus Bonsch; Benjamin Leon Bodirsky; Isabelle Weindl; Miodrag Stevanovic; Christoph Müller
The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600–700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.
Gcb Bioenergy | 2016
Markus Bonsch; Alexander Popp; Benjamin Leon Bodirsky; Jan Philipp Dietrich; Susanne Rolinski; Anne Biewald; Hermann Lotze-Campen; Isabelle Weindl; Dieter Gerten; Miodrag Stevanovic
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr−1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr−1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.
Environmental Science & Technology | 2015
Alexander Popp; Miodrag Stevanovic; Christoph Müller; Benjamin Leon Bodirsky; Markus Bonsch; Jan Philipp Dietrich; Hermann Lotze-Campen; Isabelle Weindl; Anne Biewald; Susanne Rolinski
Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Environmental Research Letters | 2016
Ulrich Kreidenweis; Miodrag Stevanovic; Benjamin Leon Bodirsky; Elmar Kriegler; Hermann Lotze-Campen; Alexander Popp
Generating negative emissions by removing carbon dioxide from the atmosphere is a key requirement for limiting global warming to well below 2 °C, or even 1.5 °C, and therefore for achieving the long-term climate goals of the recent Paris Agreement. Despite being a relatively young topic, negative emission technologies (NETs) have attracted growing attention in climate change research over the last decade. A sizeable body of evidence on NETs has accumulated across different fields that is by today too large and too diverse to be comprehensively tracked by individuals. Yet, understanding the size, composition and thematic structure of this literature corpus is a crucial pre-condition for effective scientific assessments of NETs as, for example, required for the new special report on the 1.5 °C by the Intergovernmental Panel on Climate Change (IPCC). In this paper we use scientometric methods and topic modelling to identify and characterize the available evidence on NETs as recorded in the Web of Science. We find that the development of the literature on NETs has started later than for climate change as a whole, but proceeds more quickly by now. A total number of about 2900 studies have accumulated between 1991 and 2016 with almost 500 new publications in 2016. The discourse on NETs takes place in distinct communities around energy systems, forests as well as biochar and other soil carbon options. Integrated analysis of NET portfolios—though crucial for understanding how much NETs are possible at what costs and risks—are still in their infancy and do not feature as a theme across the literature corpus. Overall, our analysis suggests that NETs research is relatively marginal in the wider climate change discourse despite its importance for global climate policy.
Science Advances | 2016
Miodrag Stevanovic; Alexander Popp; Hermann Lotze-Campen; Jan Philipp Dietrich; Christoph Müller; Markus Bonsch; Christoph Schmitz; Benjamin Leon Bodirsky; Isabelle Weindl
Welfare losses from climate change in agriculture will mainly affect consumers, particularly in the low-latitude regions. Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Environmental Science & Technology | 2017
Miodrag Stevanovic; Alexander Popp; Benjamin Leon Bodirsky; Christoph Müller; Isabelle Weindl; Jan Philipp Dietrich; Hermann Lotze-Campen; Ulrich Kreidenweis; Susanne Rolinski; Anne Biewald; Xiaoxi Wang
The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.
Global Environmental Change-human and Policy Dimensions | 2017
Elmar Kriegler; Nico Bauer; Alexander Popp; Marian Leimbach; Jessica Strefler; Lavinia Baumstark; Benjamin Leon Bodirsky; Jérôme Hilaire; David Klein; Ioanna Mouratiadou; Isabelle Weindl; Christoph Bertram; Jan-Philipp Dietrich; Gunnar Luderer; Michaja Pehl; Robert C. Pietzcker; Franziska Piontek; Hermann Lotze-Campen; Anne Biewald; Markus Bonsch; Anastasis Giannousakis; Ulrich Kreidenweis; Christoph Müller; Susanne Rolinski; Anselm Schultes; Jana Schwanitz; Miodrag Stevanovic; Katherine Calvin; Johannes Emmerling; Shinichiro Fujimori
Nature Climate Change | 2014
Alexander Popp; Isabelle Weindl; Benjamin Leon Bodirsky; Markus Bonsch; Hermann Lotze-Campen; Christoph Müller; Anne Biewald; Susanne Rolinski; Miodrag Stevanovic; Jan Philipp Dietrich
Global Environmental Change-human and Policy Dimensions | 2015
Markus Bonsch; Alexander Popp; Anne Biewald; Susanne Rolinski; Christoph Schmitz; Isabelle Weindl; Miodrag Stevanovic; Kathrin Högner; Jens Heinke; Sebastian Ostberg; Jan Philipp Dietrich; Benjamin Leon Bodirsky; Hermann Lotze-Campen