Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Grindrod is active.

Publication


Featured researches published by Scott Grindrod.


Journal of Medicinal Chemistry | 2008

Asymmetric Synthesis of 2,3-Dihydro-2-arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity

Gary M. Chinigo; Mikell Paige; Scott Grindrod; Ernest Hamel; Sivanesan Dakshanamurthy; Maksymilian Chruszcz; Wladek Minor; Milton L. Brown

For several decades the 2,3-dihydroquinazolinone (DHQZ) heterocycle has been known to possess a variety of important biological and medicinal properties. Despite the many interesting facets of these molecules, synthetic access to nonracemic DHQZ analogues has remained elusive. Herein, we disclose a synthetic route that allows access to either enantiomer of a variety of DHQZ derivatives. We illustrate the utility of this chemistry with the asymmetric preparation and biological evaluation of a new chiral fluorescent tubulin binding agent with extremely potent antiproliferative properties against human cancer cells. A computational rationale for the increased potency of the (S)-enantiomer over the (R)-enantiomer is given, based on the crystal structure of alpha,beta-tubulin complexed with colchicine. Taking advantage of the inherent fluorescence of these molecules, confocal images of GMC-5-193 (compound 7) in the cytoplasm of human melanoma cells (MDA-MB-435) cells are presented.


Molecular Cancer Therapeutics | 2011

Histone Deacetylase Cytoplasmic Trapping by a Novel Fluorescent HDAC Inhibitor

Yali Kong; Mira Jung; Kan Wang; Scott Grindrod; Alfredo Velena; Sung A. Lee; Sivanesan Dakshanamurthy; Yonghong Yang; Matthew Miessau; Chaoyi Zheng; Anatoly Dritschilo; Milton L. Brown

Inhibitors of histone deacetylases (HDAC) are an important emerging class of drugs for the treatment of cancers. HDAC inhibitors are currently under evaluation in clinical trials as single agents and as sensitizers in combinations with chemotherapies and radiation therapy. Although these drugs have important effects on cancer cell growth and functions, the mechanisms underlying HDAC inhibitor activities remain to be fully defined. By using rational drug design, compound 2, a fluorescent class II HDAC targeting inhibitor, was synthesized and observed to accumulate in the cytoplasmic compartments of treated cells, but not in the nuclei. Furthermore, immunostaining of inhibitor exposed cells for HDAC4 showed accumulation of this enzyme in the cytoplasmic compartment with concomitant increased acetylation of tubulin and nuclear histones. These observations support a mechanism by which nuclear histone acetylation is increased as a result of HDAC4 trapping and sequestration in the cytoplasm after binding to compound 2. The HDAC inhibitor offers potential as a novel theranostic agent, combining diagnostic and therapeutic properties in the same molecule. Mol Cancer Ther; 10(9); 1591–9. ©2011 AACR.


Journal of Medicinal Chemistry | 2010

Fluorescent epigenetic small molecule induces expression of the tumor suppressor ras-association domain family 1A and inhibits human prostate xenograft.

Kathryn D. Sheikh; Partha P. Banerjee; Shankar Jagadeesh; Scott Grindrod; Li Zhang; Mikell Paige; Milton L. Brown

Epigenetic silencing of Ras-association domain family 1A (RASSF1A) protein in cancer cells results in a disruption of cell cycle control, genetic instability, enhanced cell motility, and apoptotic resistance. Ectopic expression of RASSF1A reverses this tumorigenic phenotype. Thus, small molecules with the ability to restore RASSF1A expression may represent a new class of therapeutic agents. Recently, we designed and synthesized a fluorescent carbazole analogue of mahanine (alkaloid from Murraya koenigii) that restored RASSF1A mRNA expression. Our fluorescent lead compound up-regulated RASSF1A in vitro, potently inhibited human prostate cancer cell proliferation, and fluoresced at a visible wavelength, allowing for the observation of intracellular distribution. The small molecule lead was not acutely toxic up to 550 mg/kg, and dosing at 10 mg/kg reduced human xenograft tumor volume by about 40%.


Bioorganic & Medicinal Chemistry | 2011

Fluorescent cyclin-dependent kinase inhibitors block the proliferation of human breast cancer cells.

Venkata Mahidhar Yenugonda; Tushar B. Deb; Scott Grindrod; Sivanesan Dakshanamurthy; Yonghong Yang; Mikell Paige; Milton L. Brown

Inhibitors of cyclin-dependent kinases (CDKs) are an emerging class of drugs for the treatment of cancers. CDK inhibitors are currently under evaluation in clinical trials as single agents and as sensitizers in combination with radiation therapy and chemotherapies. Drugs that target CDKs could have important inhibitory effects on cancer cell cycle progression, an extremely important mechanism in the control of cancer cell growth. Using rational drug design, we designed and synthesized fluorescent CDK inhibitors (VMY-1-101 and VMY-1-103) based on a purvalanol B scaffold. The new agents demonstrated more potent CDK inhibitory activity, enhanced induction of G2/M arrest and modest apoptosis as compared to purvalanol B. Intracellular imaging of the CDK inhibitor distribution was performed to reveal drug retention in the cytoplasm of treated breast cancer cells. In human breast cancer tissue, the compounds demonstrated increased binding as compared to the fluorophore. The new fluorescent CDK inhibitors showed undiminished activity in multidrug resistance (MDR) positive breast cancer cells, indicating that they are not a substrate for p-glycoprotein. Fluorescent CDK inhibitors offer potential as novel theranostic agents, combining therapeutic and diagnostic properties in the same molecule.


Journal of Medicinal Chemistry | 2014

Novel carbazole inhibits phospho-STAT3 through induction of protein-tyrosine phosphatase PTPN6.

Shujie Hou; Yong Weon Yi; Hyo Jin Kang; Li Zhang; Hee Jeong Kim; Yali Kong; Yong Liu; Kan Wang; Hye-Sik Kong; Scott Grindrod; Insoo Bae; Milton L. Brown

The aberrant activation of STAT3 occurs in many human cancers and promotes tumor progression. Phosphorylation of a tyrosine at amino acid Y705 is essential for the function of STAT3. Synthesized carbazole derived with fluorophore compound 12 was discovered to target STAT3 phosphorylation. Compound 12 was found to inhibit STAT3-mediated transcription as well as to reduce IL-6 induced STAT3 phosphorylation in cancer cell lines expressing both elevated and low levels of phospho-STAT3 (Y705). Compound 12 potently induced apoptosis in a broad number of TNBC cancer cell lines in vitro and was effective at inhibiting the in vivo growth of human TNBC xenograft tumors (SUM149) without any observed toxicity. Compound 12 also effectively inhibited the growth of human lung tumor xenografts (A549) harboring aberrantly active STAT3. In vitro and in vivo studies showed that the inhibitory effects of 12 on phospho-STAT3 were through up-regulation of the protein-tyrosine phosphatase PTPN6. Our present studies strongly support the continued preclinical evaluation of compound 12 as a potential chemotherapeutic agent for TNBC and cancers with constitutive STAT3 signaling.


Cancer Biology & Therapy | 2010

VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells

Lymor Ringer; Paul Sirajuddin; Venkata Mahidhar Yenugonda; Anup Ghosh; Kyle Divito; Valerie Trabosh; Yesha Patel; Amanda Brophy; Scott Grindrod; Michael P. Lisanti; Dean S. Rosenthal; Milton L. Brown; Maria Laura Avantaggiati; Olga Rodriguez; Chris Albanese

The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 µM, VMY-1-103 increased both the proportion of cells in G1 and p21CIP1 protein levels. At higher concentrations (5 µM or 10 µM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 µM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo.


Bioorganic & Medicinal Chemistry | 2010

Synthesis of C-Glycoside Analogues of β-Galactosamine-(1–>4)-3-O-Methyl-D-Chiro-Inositol and Assay as Activator of Protein Phosphatases PDHP and PP2Cα

Sunej Hans; Fatoumata Camara; Ahmad S. Altiti; Alejandro Martin-Montalvo; David L. Brautigan; Douglas Heimark; Joseph Larner; Scott Grindrod; Milton L. Brown; David R. Mootoo

The glycan beta-galactosamine-(1-4)-3-O-methyl-D-chiro-inositol, called INS-2, was previously isolated from liver as a putative second messenger-modulator for insulin. Synthetic INS-2 injected intravenously in rats is both insulin-mimetic and insulin-sensitizing. This bioactivity is attributed to allosteric activation of pyruvate dehydrogenase phosphatase (PDHP) and protein phosphatase 2Calpha (PP2Calpha). Towards identification of potentially metabolically stable analogues of INS-2 and illumination of the mechanism of enzymatic activation, C-INS-2, the exact C-glycoside of INS-2, and C-INS-2-OH the deaminated analog of C-INS-2, were synthesized and their activity against these two enzymes evaluated. C-INS-2 activates PDHP comparable to INS-2, but failed to activate PP2Calpha. C-INS-2-OH was inactive against both phosphatases. These results and modeling of INS-2, C-INS-2 and C-INS-2-OH into the 3D structure of PDHP and PP2Calpha, suggest that INS-2 binds to distinctive sites on the two different phosphatases to activate insulin signaling. Thus the carbon analog could selectively favor glucose disposal via oxidative pathways.


Bioorganic & Medicinal Chemistry | 2012

Synthesis and biological evaluation of a fluorescent analog of phenytoin as a potential inhibitor of neuropathic pain and imaging agent

Thomas H. Walls; Scott Grindrod; Dawn Béraud; Li Zhang; Aparna R. Baheti; Sivanesan Dakshanamurthy; Manoj K. Patel; Milton L. Brown; Linda MacArthur

Here we report on a novel fluorescent analog of phenytoin as a potential inhibitor of neuropathic pain with potential use as an imaging agent. Compound 2 incorporated a heptyl side chain and dansyl moiety onto the parent compound phenytoin and produced greater displacement of BTX from sodium channels and greater functional blockade with greatly reduced toxicity. Compound 2 reduced mechano-allodynia in a rat model of neuropathic pain and was visualized ex vivo in sensory neuron axons with two-photon microscopy. These results suggest a promising strategy for developing novel sodium channel inhibitors with imaging capabilities.


Frontiers in Oncology | 2011

Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

Scott Grindrod; Simeng Suy; Shannon Fallen; Masumi Eto; Jeffrey A. Toretsky; Milton L. Brown

Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype.


Bioconjugate Chemistry | 2016

Aminopeptidase P Mediated Targeting for Breast Tissue Specific Conjugate Delivery.

Antoinette Cordova; Jordan Woodrick; Scott Grindrod; Li Zhang; Yasemin Saygideger-Kont; Kan Wang; Stephen Devito; Stefano G. Daniele; Mikell Paige; Milton L. Brown

Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.

Collaboration


Dive into the Scott Grindrod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira Jung

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kan Wang

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Walls

Georgetown University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge