Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miranda Lau is active.

Publication


Featured researches published by Miranda Lau.


Journal of Biological Chemistry | 2004

Ubiquitylation of Neuronal Nitric-oxide Synthase by CHIP, a Chaperone-dependent E3 Ligase

Hwei Ming Peng; Yoshihiro Morishima; Gary J. Jenkins; Anwar Y. Dunbar; Miranda Lau; Cam Patterson; William B. Pratt; Yoichi Osawa

It is established that neuronal nitric-oxide synthase (nNOS) is ubiquitylated and proteasomally degraded. The proteasomal degradation of nNOS is enhanced by suicide inactivation of nNOS or by the inhibition of hsp90, which is a chaperone found in a native complex with nNOS. In the current study, we have examined whether CHIP, a chaperone-dependent E3 ubiquitin-protein isopeptide ligase that is known to ubiquitylate other hsp90-chaperoned proteins, could act as an ubiquitin ligase for nNOS. We found with the use of HEK293T or COS-7 cells and transient transfection methods that CHIP overexpression causes a decrease in immunodetectable levels of nNOS. The extent of the loss of nNOS is dependent on the amount of CHIP cDNA used for transfection. Lactacystin (10 μm), a selective proteasome inhibitor, attenuates the loss of nNOS in part by causing the nNOS to be found in a detergent-insoluble form. Immunoprecipitation of the nNOS and subsequent Western blotting with an anti-ubiquitin IgG shows an increase in nNOS-ubiquitin conjugates because of CHIP. Moreover, incubation of nNOS with a purified system containing an E1 ubiquitin-activating enzyme, an E2 ubiquitin carrier protein conjugating enzyme (UbcH5a), CHIP, glutathione S-transferase-tagged ubiquitin, and an ATP-generating system leads to the ubiquitylation of nNOS. The addition of purified hsp70 and hsp40 to this in vitro system greatly enhances the amount of nNOS-ubiquitin conjugates, suggesting that CHIP is an E3 ligase for nNOS whose action is facilitated by (and possibly requires) its interaction with nNOS-bound hsp70.


Biochemistry | 2009

Dynamic Cycling with Hsp90 Stabilizes Neuronal Nitric Oxide Synthase Through Calmodulin-dependent Inhibition of Ubiquitination

Hwei Ming Peng; Yoshihiro Morishima; Kelly M. Clapp; Miranda Lau; William B. Pratt; Yoichi Osawa

NO production by neuronal nitric oxide synthase (nNOS) requires calmodulin and is enhanced by the chaperone Hsp90, which cycles dynamically with the enzyme. The proteasomal degradation of nNOS is enhanced by suicide inactivation and by treatment with Hsp90 inhibitors, the latter suggesting that dynamic cycling with Hsp90 stabilizes nNOS. Here, we use a purified ubiquitinating system containing CHIP (carboxyl terminus of Hsp70-interacting protein) as the E3 ligase to show that Hsp90 inhibits CHIP-dependent nNOS ubiquitination. Like the established Hsp90 enhancement of NO synthesis, Hsp90 inhibition of nNOS ubiquitination is Ca2+/calmodulin-dependent, suggesting that the same interaction of Hsp90 with the enzyme is responsible for both enhancement of nNOS activity and inhibition of ubiquitination. It is established that CHIP binds to Hsp90 as well as to Hsp70, but we show here the two chaperones have opposing actions on nNOS ubiquitination, with Hsp70 stimulating and Hsp90 inhibiting. We have used two mechanism-based inactivators, guanabenz and NG-amino-L-arginine, to alter the heme/substrate binding cleft and promote nNOS ubiquitination that can be inhibited by Hsp90. We envision that, as nNOS undergoes toxic damage, the heme/substrate binding cleft opens exposing hydrophobic residues as the initial step in unfolding. As long as Hsp90 can form even transient complexes with the opening cleft, ubiquitination by Hsp70-dependent ubiquitin E3 ligases, like CHIP, is inhibited. When unfolding of the cleft progresses to a state that cannot cycle with Hsp90, Hsp70-dependent ubiquitination is unopposed. In this way, the Hsp70/Hsp90 machinery makes the quality control decision for stabilization versus degradation of nNOS.


Journal of Biological Chemistry | 2014

Architecture of the Nitric Oxide Synthase Holoenzyme Reveals Large Conformational Changes and a Calmodulin-Driven Release of the FMN Domain

Adam L. Yokom; Yoshihiro Morishima; Miranda Lau; Min Su; Alisa Glukhova; Yoichi Osawa; Daniel R. Southworth

Background: NOS enzymes are large, dimeric complexes essential in mammalian physiology. Results: EM structural analysis and three-dimensional models reveal nNOS reductase-oxygenase arrangements and a CaM-dependent rotation of the FMN domain. Conclusion: Coordinated conformational changes act to reposition the FMN domain for electron transfer. Significance: This work captures structural states of the NOS holoenzyme that drive the NO synthesis cycle. Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca2+-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.


Journal of Biological Chemistry | 2010

C331A Mutant of Neuronal Nitric-oxide Synthase Is Labilized for Hsp70/CHIP (C Terminus of HSC70-interacting Protein)-dependent Ubiquitination

Kelly M. Clapp; Hwei Ming Peng; Yoshihiro Morishima; Miranda Lau; Vyvyca J. Walker; William B. Pratt; Yoichi Osawa

It is established that suicide inactivation of neuronal nitric-oxide synthase (nNOS) by drugs and other xenobiotics leads to ubiquitination and proteasomal degradation of the enzyme. The exact mechanism is not known, although it is widely thought that the covalent alteration of the active site during inactivation triggers the degradation. A mechanism that involves recognition of the altered nNOS by Hsp70 and its cochaperone CHIP, an E3-ubiquitin ligase, has been proposed. To further address how alterations of the active site trigger ubiquitination of nNOS, we examined a C331A nNOS mutant, which was reported to have impaired ability to bind l-arginine and tetrahydrobiopterin. We show here that C331A nNOS is highly susceptible to ubiquitination by a purified system containing ubiquitinating enzymes and chaperones, by the endogenous ubiquitinating system in reticulocyte lysate fraction II, and by intact HEK293 cells. The involvement of the altered heme cleft in regulating ubiquitination is confirmed by the finding that the slowly reversible inhibitor of nNOS, NG-nitro-l-arginine, but not its inactive d-isomer, protects the C331A nNOS from ubiquitination in all these experimental systems. We also show that both Hsp70 and CHIP play a major role in the ubiquitination of C331A nNOS, although Hsp90 protects from ubiquitination. Thus, these studies further strengthen the link between the mobility of the substrate-binding cleft and chaperone-dependent ubiquitination of nNOS. These results support a general model of chaperone-mediated protein quality control and lead to a novel mechanism for substrate stabilization based on nNOS interaction with the chaperone machinery.


Journal of Biological Chemistry | 2012

Ubiquitination of neuronal nitric-oxide synthase in the calmodulin-binding site triggers proteasomal degradation of the protein

Kelly M. Clapp; Hwei Ming Peng; Gary J. Jenkins; Michael J. Ford; Yoshihiro Morishima; Miranda Lau; Yoichi Osawa

Background: CHIP-dependent ubiquitination of NO synthase is an important regulatory mechanism. Results: A dozen ubiquitination sites on neuronal NO synthase were identified with 11 of the sites on either the oxygenase or calmodulin domain. Conclusion: Lysine residue 739 is the major site for poly-ubiquitination with other sites responsible for mono-ubiquitination of neuronal NO synthase. Significance: CHIP-dependent regulation of neuronal NO synthase turnover occurs primarily through lysine residue 739. Nitric-oxide synthase, a cytochrome P450-like hemoprotein enzyme, catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of physiological processes. Our laboratory has discovered that certain drugs suicide-inactivate neuronal nitric-oxide synthase (nNOS) and lead to the preferential ubiquitination of the inactivated nNOS by an Hsp70- and CHIP (C terminus of Hsc70-interacting protein)-dependent process. To further understand the process by which altered nNOS is recognized, ubiquitinated, and proteasomally degraded, we examined the sites of ubiquitination on nNOS. We utilized an in vitro ubiquitination system containing purified E1, E2 (UbcH5a), Hsp70, and CHIP that recapitulates the ability of the cells to selectively recognize and ubiquitinate the altered forms of nNOS. LC-MS/MS analysis of the tryptic peptides obtained from the in vitro ubiquitinated nNOS identified 12 ubiquitination sites. Nine of the sites were within the oxygenase domain and two were in the calmodulin-binding site, which links the oxygenase and reductase domains, and one site was in the reductase domain. Mutational analysis of the lysines in the calmodulin-binding site revealed that Lys-739 is a major site for poly-ubiquitination of nNOS in vitro and regulates, in large part, the CHIP-dependent degradation of nNOS in HEK293 cells, as well as in in vitro studies with fraction II. Elucidating the exact site of ubiquitination is an important step in understanding how chaperones recognize and trigger degradation of nNOS.


Plant Signaling & Behavior | 2007

Plant-Derived Small Molecule Inhibitors of Neuronal NO-Synthase: Potential Effects on Protein Degradation

Yoichi Osawa; Miranda Lau; Ezra R. Lowe

Cigarette smoking is known to cause a decrease in NO production in man resulting in a variety of pathological effects, including vascular dysfunction. Aqueous extracts of cigarette and cigarette smoke contain chemical inhibitors to NO-synthases, a heme-containing cytochrome P450 enzymes. More recently, it was shown that freshly harvested leaves from the tobacco plant (Nicotiana tabacum, Solanaceae) also contain chemical inhibitors to neuronal NO-synthase (nNOS). Examination of leaves from 32 other plants representing diverse members of the plant kingdom showed that 17 other plants, besides tobacco, contain these chemical inhibitors. Of all these plants, 16 are members of the core asterids flowering plant group and 6 are members of the Solanaceae family. Although the identity of the chemicals is not known, perhaps the closely related plants contain the same or similar compounds that inhibit nNOS. The inhibitory effects are not attributable to nicotine. The discovery of these chemicals and their further characterization may help to explain the loss of nNOS in smokers. In this addendum, we discuss these results in light of the effect of tobacco-derived chemicals in inhibiting P450 cytochromes, as well as our thoughts on how the inactivation of nNOS leads to its selective downregulation through proteolytic degradation.


Molecular Pharmacology | 2018

Chaperone Activity and Dimerization Properties of Hsp90α and Hsp90β in Glucocorticoid Receptor Activation by the Multiprotein Hsp90/Hsp70-Dependent Chaperone Machinery

Yoshihiro Morishima; Ranjit Mehta; Miyako Yoshimura; Miranda Lau; Daniel R. Southworth; Theodore S. Lawrence; William B. Pratt; Mukesh K. Nyati; Yoichi Osawa

Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90β, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90β in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90β have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ββ homodimers and no GR•Hsp90αβ heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αβ heterodimers. The formation of GR•Hsp90αβ heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αβ heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.


Analytical Biochemistry | 2016

Improved method for assembly of hemeprotein neuronal NO-synthase heterodimers

Yoshihiro Morishima; Haoming Zhang; Miranda Lau; Yoichi Osawa

The assembly of mutated and wild type monomers into functional heterodimeric hemeproteins has provided important mechanistic insights. As in the case of NO synthase (NOS), the existing methods to make such heterodimeric NOSs are inefficient and labor intensive with typical yields of about 5%. We have found that expression of neuronal NOS heterodimers in insect cells, where we take advantage of an exogenous heme-triggered chaperone-assisted assembly process, provides an approximately 43% yield in heterodimeric NOS. In contrast, in Escherichia coli little heterodimerization occurred. Thus, insect cells are preferred and may represent a valuable method for assembly of other dimeric hemeproteins.


Journal of Biological Chemistry | 2002

Biochemical and Genetic Analyses of Yeast and Human High Affinity Copper Transporters Suggest a Conserved Mechanism for Copper Uptake

Sergi Puig; Jaekwon Lee; Miranda Lau; Dennis J. Thiele


Journal of Biological Chemistry | 2004

Cti6 Is an Rpd3-Sin3 Histone Deacetylase-associated Protein Required for Growth under Iron-limiting Conditions in Saccharomyces cerevisiae

Sergi Puig; Miranda Lau; Dennis J. Thiele

Collaboration


Dive into the Miranda Lau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hwei Ming Peng

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergi Puig

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge