Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Commandré is active.

Publication


Featured researches published by Mireille Commandré.


Optics Letters | 2012

Femtosecond laser damage resistance of oxide and mixture oxide optical coatings

Benoit Mangote; Laurent Gallais; Mireille Commandré; Mathias Mende; Lars Jensen; Henrik Ehlers; Marco Jupé; Detlev Ristau; Andrius Melninkaitis; Julius Mirauskas; Valdas Sirutkaitis; Simonas Kičas; Tomas Tolenis; Ramutis Drazdys

We report on the laser damage resistance of ion beam-sputtered oxide materials (Al2O3, Nb2O5, HfO2, SiO2, Ta2O5, ZrO2) and mixtures of Al2O3-SiO2, Nb2O5-SiO2, HfO2-SiO2, Ta2O5-SiO2, and ZrO2-SiO2, irradiated by single 500 fs pulses at 1030 nm. Laser-induced damage threshold (LIDT), refractive index, and bandgaps of the single-layer coatings are measured. For pure oxide materials a linear evolution of the LIDT with bandgap is observed. The results are in accordance with our simulations based on photo-ionization and avalanche-ionization. In the case of mixtures, however, deviations from the previous behaviors are evidenced. The evolution of the LIDT as a function of the refractive index is analyzed, and an empirical description of the relation between refractive index and LIDT is proposed.


Applied Optics | 1996

Characterization of optical coatings by photothermal deflection.

Mireille Commandré; Pierre Roche

An overview of photothermal deflection principles and applications is given. The modeling of temperature distribution and the calculation of deflection that is due to both the refractive-index gradient and the thermal deformation of the sample are presented. Three configurations usually employed are compared, and their respective advantages are discussed in relation to their application. The calibration for absolute measurement of absorption is detailed, showing that calibration limits the accuracy of measurement. Some examples of specific information obtained by photothermal mapping of absorption are given.


Journal of Applied Physics | 2008

Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics

Laurent Gallais; Jérémie Capoulade; Jean-Yves Natoli; Mireille Commandré

We propose a model to link laser damage initiator properties (such as nature, size distribution, and density) to measured laser damage probabilities in optical materials. The model is based on the calculation of light absorption in nanoabsorbers and subsequent heating, coupled to laser damage statistics, and allows to obtain the laser damage probability as a function of laser fluence. Applications to the case of optical coatings irradiated in the nanosecond regime are presented. Laser damage probability curves are measured in hafnia single layer coatings made under different conditions: electron beam deposition and reactive low voltage ion plating. By studying the influence of the laser irradiation parameters (wavelength and beam size) and coating properties on the simulations, we show with our methodology that initiating defects (hafnium inclusions) can be identified. The implications of this approach for physical understanding and metrology applications are discussed.


Applied Optics | 2011

Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering

Andrius Melninkaitis; Tomas Tolenis; Lina Mažulė; Julius Mirauskas; Valdas Sirutkaitis; Benoit Mangote; Xinghai Fu; Myriam Zerrad; Laurent Gallais; Mireille Commandré; Simonas Kičas; Ramutis Drazdys

ZrO2-SiO2 and Nb2O5-SiO2 mixture coatings as well as those of pure zirconia (ZrO2), niobia (Nb2O5), and silica (SiO2) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO2. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.


Applied Optics | 2014

Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs

Laurent Gallais; Mireille Commandré

We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.


Optical Engineering | 2008

Accurate metrology for laser damage measurements in nonlinear crystals

Anne Hildenbrand; Frank Wagner; Hassan Akhouayri; Jean-Yves Natoli; Mireille Commandré

Accurate laser damage measurements are more difficult to perform in nonlinear optical crystals than in glasses due to several effects proper to these materials or greatly enhanced in these materials. Before discussing these effects, we address the topic of error bar determination for probability measurements. Error bars for the measured damage probabilities are especially important when testing small and expensive samples like nonlinear crystals, where only few sites are used for each measurement. The mathematical basics for the numerical calculation of probability error bars corresponding to a chosen confidence level are presented. Effects that possibly modify the maximum light intensity obtained by focusing into a biaxial nonlinear crystal are mainly the focusing aberrations and self-focusing. Depending on focusing conditions, position of the focal point in the crystal, beam propagation direction, and polarization, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor based on former theoretical work is proposed for this effect. The characteristics of self-focusing are quickly reviewed for the sake of completeness, and a note on parasitic second harmonic generation is added at the end.


Physical Review A | 2014

Quasimodal expansion of electromagnetic fields in open two-dimensional structures

Benjamin Vial; Frédéric Zolla; André Nicolet; Mireille Commandré

A quasimodal expansion method (QMEM) is developed to model and understand the scattering properties of arbitrary shaped two-dimensional (2-D) open structures. In contrast with the bounded case which have only discrete spectrum (real in the lossless media case), open resonators show a continuous spectrum composed of radiation modes and may also be characterized by resonances associated to complex eigenvalues (quasimodes). The use of a complex change of coordinates to build Perfectly Matched Layers (PMLs) allows the numerical computation of those quasimodes and of approximate radiation modes. Unfortunately, the transformed operator at stake is no longer self-adjoint, and classical modal expansion fails. To cope with this issue, we consider an adjoint eigenvalue problem which eigenvectors are bi-orthogonal to the eigenvectors of the initial problem. The scattered field is expanded on this complete set of modes leading to a reduced order model of the initial problem. The different contributions of the eigenmodes to the scattered field unambiguously appears through the modal coefficients, allowing us to analyze how a given mode is excited when changing incidence parameters. This gives new physical insights to the spectral properties of different open structures such as nanoparticles and diffraction gratings. Moreover, the QMEM proves to be extremely efficient for the computation of Local Density Of States (LDOS).


Optics Express | 2007

The finite element method as applied to the diffraction by an anisotropic grating.

Guillaume Demésy; Frédéric Zolla; André Nicolet; Mireille Commandré; Caroline Fossati

The main goal of the method proposed in this paper is the numerical study of various kinds of anisotropic gratings deposited on isotropic substrates, without any constraint upon the diffractive pattern geometry or electromagnetic properties. To that end we propose a new FEM (Finite Element Method) formulation which rigorously deals with each infinite issue inherent to grating problems. As an example, 2D numerical experiments are presented in the cases of the diffraction of a plane wave by an anisotropic aragonite grating on silica substrate (for the two polarization cases and at normal or oblique incidence). We emphasize the interesting property that the diffracted field is non symmetric in a geometrically symmetric configuration.


Review of Scientific Instruments | 2012

A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films

Benoit Mangote; Laurent Gallais; Myriam Zerrad; Fabien Lemarchand; Lihong Gao; Mireille Commandré; Michel Lequime

A laser damage test facility delivering pulses from 100 fs to 3 ps and designed to operate at 1030 nm is presented. The different details of its implementation and performances are given. The originality of this system relies the online damage detection system based on Nomarski microscopy and the use of a non-conventional energy detection method based on the utilization of a cooled CCD that offers the possibility to obtain the laser induced damage threshold (LIDT) with high accuracy. Applications of this instrument to study thin films under laser irradiation are presented. Particularly the deterministic behavior of the sub-picosecond damage is investigated in the case of fused silica and oxide films. It is demonstrated that the transition of 0-1 damage probability is very sharp and the LIDT is perfectly deterministic at few hundreds of femtoseconds. The damage process in dielectric materials being the results of electronic processes, specific information such as the material bandgap is needed for the interpretation of results and applications of scaling laws. A review of the different approaches for the estimation of the absorption gap of optical dielectric coatings is conducted and the results given by the different methods are compared and discussed. The LIDT and gap of several oxide materials are then measured with the presented instrument: Al(2)O(3), Nb(2)O(5), HfO(2), SiO(2), Ta(2)O(5), and ZrO(2). The obtained relation between the LIDT and gap at 1030 nm confirms the linear evolution of the threshold with the bandgap that exists at 800 nm, and our work expands the number of tested materials.


Optics Letters | 2005

Effect of multiple laser irradiations on silica at 1064 and 355 nm

Jean-Yves Natoli; Bertrand Bertussi; Mireille Commandré

We analyze laser damage precursor evolution under multiple irradiations by changing test parameters such as shot number, wavelength, shot frequency, and test location (bulk or surface). The experimental data exhibit different behaviors under repetitive shots regarding the damage precursor densities and thresholds. The results provide new information for understanding the laser damage initiation process in silica. Furthermore, the data permit us to predict the lifetime of optical components under multiple irradiations.

Collaboration


Dive into the Mireille Commandré's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Yves Natoli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Yves Natoli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frank Wagner

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Nicolet

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Benoit Mangote

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Wagner

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge