Mirjam Bunck
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirjam Bunck.
The Journal of Neuroscience | 2007
Rudolph Marsch; Elisabeth Foeller; Gerhard Rammes; Mirjam Bunck; Manfred Kössl; Florian Holsboer; Walter Zieglgänsberger; Rainer Landgraf; Beat Lutz; Carsten T. Wotjak
The transient receptor potential vanilloid type 1 channel (TRPV1) (formerly called vanilloid receptor VR1) is known for its key role of functions in sensory nerves such as perception of inflammatory and thermal pain. Much less is known about the physiological significance of the TRPV1 expression in the brain. Here we demonstrate that TRPV1 knock-out mice (TRPV1-KO) show less anxiety-related behavior in the light–dark test and in the elevated plus maze than their wild-type littermates with no differences in locomotion. Furthermore, TRPV1-KO mice showed less freezing to a tone after auditory fear conditioning and stress sensitization. This reduction of conditioned and sensitized fear could not be explained by alterations in nociception. Also, tone perception per se was unaffected, as revealed by determination of auditory thresholds through auditory brainstem responses and distortion-product otoacoustic emissions. TRPV1-KO showed also less contextual fear if assessed 1 d or 1 month after strong conditioning protocols. These impairments in hippocampus-dependent learning were mirrored by a decrease in long-term potentiation in the Schaffer collateral–commissural pathway to CA1 hippocampal neurons. Our data provide first evidence for fear-promoting effects of TRPV1 with respect to both innate and conditioned fear and for a decisive role of this receptor in synaptic plasticity.
The Journal of Neuroscience | 2005
Simone A. Krömer; Melanie S. Keßler; Dale Milfay; Isabel Birg; Mirjam Bunck; Ludwig Czibere; Markus Panhuysen; Benno Pütz; Jan M. Deussing; Florian Holsboer; Rainer Landgraf; Christoph W. Turck
For >15 generations, CD1 mice have been selectively and bidirectionally bred for either high-anxiety-related behavior (HAB-M) or low-anxiety-related behavior (LAB-M) on the elevated plus-maze. Independent of gender, HAB-M were more anxious than LAB-M animals in a variety of additional tests, including those reflecting risk assessment behaviors and ultrasound vocalization, with unselected CD1 “normal” control (NAB-M) and cross-mated (CM-M) mice displaying intermediate behavioral scores in most cases. Furthermore, in both the forced-swim and tail-suspension tests, LAB-M animals showed lower scores of immobility than did HAB-M and NAB-M animals, indicative of a reduced depression-like behavior. Using proteomic and microarray analyses, glyoxalase-I was identified as a protein marker, which is consistently expressed to a higher extent in LAB-M than in HAB-M mice in several brain areas. The same phenotype-dependent difference was found in red blood cells with NAB-M and CM-M animals showing intermediate expression profiles of glyoxalase-I. Additional studies will examine whether glyoxalase-I has an impact beyond that of a biomarker to predict the genetic predisposition to anxiety- and depression-like behavior.
Neuroscience & Biobehavioral Reviews | 2007
Rainer Landgraf; Melanie S. Kessler; Mirjam Bunck; Chris Murgatroyd; Dietmar Spengler; Marina Zimbelmann; Markus Nussbaumer; Ludwig Czibere; Christoph W. Turck; Nicolas Singewald; Dan Rujescu; Elisabeth Frank
Two animal models of trait anxiety, HAB/LAB rats and mice, are described, representing inborn extremes in anxiety-related behavior. The comprehensive phenotypical characterization included basal behavioral features, stress-coping strategies and neuroendocrine responses upon stressor exposure with HAB animals being hyper-anxious, preferring passive coping, emitting more stressor-induced ultrasonic vocalization calls and showing typical peculiarities of the hypothalamic-pituitary-adrenocortical axis and line-specific patterns of Fos expression in the brain indicative of differential neuronal activation. In most cases, unselected Wistar rats and CD1 mice, respectively, displayed intermediate behaviors. In both HAB/LAB rats and mice, the behavioral phenotype has been found to be significantly correlated with the expression of the neuropeptide arginine vasopressin (AVP) at the level of the hypothalamic paraventricular nucleus (PVN). Additional receptor antagonist approaches in HABs confirmed that intra-PVN release of AVP is likely to contribute to hyper-anxiety and depression-like behavior. As shown exemplarily in HAB rats and LAB mice, single nucleotide polymorphisms (SNPs) in regulatory structures of the AVP gene underlie AVP-mediated phenotypic phenomena; in HAB rats, a SNP in the promoter of the AVP gene leads to reduced binding of the transcriptional repressor CBF-A, thus causing AVP overexpression and overrelease. Conversely, in LAB mice, a SNP in the AVP gene seems to cause an amino acid exchange in the signal peptide, presumably leading to a deficit in bioavailable AVP likely to underlie the total hypo-anxiety of LAB mice in combination with signs of central diabetes insipidus. Another feature of LAB mice is overexpression of glyoxalase-I. The functional characterization of this enzyme will determine its involvement in anxiety-related behavior beyond that of a reliable biomarker. The further identification of quantitative trait loci, candidate genes (and their products) and SNPs will not only help to explain inter-individual variation in emotional behavior, but will also reveal novel targets for anxiolytic and antidepressive interventions.
The Journal of Neuroscience | 2004
Chris Murgatroyd; Alexandra Wigger; Elisabeth Frank; Nicolas Singewald; Mirjam Bunck; Florian Holsboer; Rainer Landgraf; Dietmar Spengler
Two inbred rat lines have been developed that show either high (HAB) or low (LAB) anxiety-related behavior. The behavioral phenotype correlates with arginine vasopressin (AVP) expression at the level of the hypothalamic paraventricular nucleus (PVN), but not supraoptic nucleus, with HAB animals overexpressing the neuropeptide in both magnocellular and parvocellular subdivisions of the PVN. We detected a number of single nucleotide polymorphisms (SNPs) in the AVP locus that differ between the HAB and LAB animals, two of which were embedded in cis-regulatory elements. The HAB-specific allele of the AVP gene promoter occurs in 1.5% of outbred Wistar rats and is more transcriptionally active in vivo, as revealed by allele-specific transcription studies in cross-mated HAB/LAB F1 animals. Interestingly, one specific SNP [A(-1276)G] conferred reduced binding of the transcriptional repressor CArG binding factor A (CBF-A) in the HAB allele, the consequent differential regulation of the AVP promoter resulting in an overexpression of AVP in vitro and in vivo. Furthermore, CBF-A is highly coexpressed in AVP-containing neurons of the PVN supporting an important role for regulation of AVP gene expression in vivo. Taken together, our results demonstrate a role for an AVP gene polymorphism and CBF-A in elevated AVP expression in the PVN of HAB rats likely to contribute to their behavioral and neuroendocrine phenotype.
Molecular Psychiatry | 2011
Ludwig Czibere; D. Roeske; Susanne Lucae; P. G. Unschuld; Stephan Ripke; Michael Specht; Martin A. Kohli; Stefan Kloiber; Marcus Ising; Angela Heck; Hildegard Pfister; P. Zimmermann; Roselind Lieb; Benno Pütz; Manfred Uhr; Peter Weber; Jan M. Deussing; Mariya Gonik; Mirjam Bunck; Melanie S. Kessler; Elisabeth Frank; Christa Hohoff; Katharina Domschke; Petra Krakowitzky; W. Maier; Borwin Bandelow; Christian Jacob; J. Deckert; Stefan Schreiber; Jana Strohmaier
The lifetime prevalence of panic disorder (PD) is up to 4% worldwide and there is substantial evidence that genetic factors contribute to the development of PD. Single-nucleotide polymorphisms (SNPs) in TMEM132D, identified in a whole-genome association study (GWAS), were found to be associated with PD in three independent samples, with a two-SNP haplotype associated in each of three samples in the same direction, and with a P-value of 1.2e−7 in the combined sample (909 cases and 915 controls). Independent SNPs in this gene were also associated with the severity of anxiety symptoms in patients affected by PD or panic attacks as well as in patients suffering from unipolar depression. Risk genotypes for PD were associated with higher TMEM132D mRNA expression levels in the frontal cortex. In parallel, using a mouse model of extremes in trait anxiety, we could further show that anxiety-related behavior was positively correlated with Tmem132d mRNA expression in the anterior cingulate cortex, central to the processing of anxiety/fear-related stimuli, and that in this animal model a Tmem132d SNP is associated with anxiety-related behavior in an F2 panel. TMEM132D may thus be an important new candidate gene for PD as well as more generally for anxiety-related behavior.
Biological Psychiatry | 2011
Michaela D. Filiou; Yaoyang Zhang; Larysa Teplytska; Stefan Reckow; Philipp Gormanns; Giuseppina Maccarrone; Elisabeth Frank; Melanie S. Kessler; Boris Hambsch; Markus Nussbaumer; Mirjam Bunck; Tonia Ludwig; Alexander Yassouridis; Florian Holsboer; Rainer Landgraf; Christoph W. Turck
BACKGROUND Although anxiety disorders are the most prevalent psychiatric disorders, no molecular biomarkers exist for their premorbid diagnosis, accurate patient subcategorization, or treatment efficacy prediction. To unravel the neurobiological underpinnings and identify candidate biomarkers and affected pathways for anxiety disorders, we interrogated the mouse model of high anxiety-related behavior (HAB), normal anxiety-related behavior (NAB), and low anxiety-related behavior (LAB) employing a quantitative proteomics and metabolomics discovery approach. METHODS We compared the cingulate cortex synaptosome proteomes of HAB and LAB mice by in vivo (15)N metabolic labeling and mass spectrometry and quantified the cingulate cortex metabolomes of HAB/NAB/LAB mice. The combined data sets were used to identify divergent protein and metabolite networks by in silico pathway analysis. Selected differentially expressed proteins and affected pathways were validated with immunochemical and enzymatic assays. RESULTS Altered levels of up to 300 proteins and metabolites were found between HAB and LAB mice. Our data reveal alterations in energy metabolism, mitochondrial import and transport, oxidative stress, and neurotransmission, implicating a previously nonhighlighted role of mitochondria in modulating anxiety-related behavior. CONCLUSIONS Our results offer insights toward a molecular network of anxiety pathophysiology with a focus on mitochondrial contribution and provide the basis for pinpointing affected pathways in anxiety-related behavior.
Molecular & Cellular Proteomics | 2006
Claudia Ditzen; Archana M. Jastorff; Melanie S. Kessler; Mirjam Bunck; Larysa Teplytska; Simone A. Krömer; Jeeva Varadarajulu; Bianca-Sabrina Targosz; Eser Sayan-Ayata; Florian Holsboer; Rainer Landgraf; Christoph W. Turck
Brain proteome analysis of mice selectively bred for either high or low anxiety-related behavior revealed quantitative and qualitative protein expression differences. The enzyme glyoxalase-I was consistently expressed to a higher extent in low anxiety as compared with high anxiety mice in several brain areas. The same phenotype-dependent difference was also found in red blood cells with normal and cross-mated animals showing intermediate expression profiles of glyoxalase-I. Another protein that showed a different mobility during two-dimensional gel electrophoresis was identified as enolase phosphatase. The presence of both protein markers in red or white blood cells, respectively, creates the opportunity to screen for their expression in clinical blood specimens from patients suffering from anxiety.
Social Neuroscience | 2011
Melanie S. Kessler; Oliver J. Bosch; Mirjam Bunck; Rainer Landgraf; Inga D. Neumann
Brain arginine vasopressin (AVP) not only regulates male social behavior and emotionality, but also promotes maternal behavior, as has been shown in rats. In our CD1 mice breed for high (HAB) or low (LAB) anxiety-related behavior, LAB mice have markedly less AVP mRNA expression in the hypothalamic paraventricular nucleus compared with HAB mice. Together these findings suggest that HAB and LAB mice represent a good model to assess the role of AVP in mouse maternal behavior. Therefore, we studied maternal care of HAB and LAB mouse dams and investigated the impact of maternal care on the offsprings anxiety in a cross-fostering paradigm. In comparison with HAB dams, LABs displayed less maternal care. Daily acute intracerebroventricular infusions of AVP in early lactation increased maternal care of LAB dams and acted anxiogenically. Cross-fostering on postnatal day 5 did not alter separation-induced high and low ultrasonic vocalization calling frequency, a measure of inborn anxiety, in HAB and LAB offspring, respectively. However, adult cross-fostered HAB mice displayed a trend towards decreased anxiety on the elevated plus-maze, which was still significantly higher compared with LAB mice. The low levels of depressive-like behavior, stress-reactivity, and hypothalamic AVP mRNA expression in adult LAB offspring were found to be independent of cross-fostering. In conclusion, the HAB/LAB differences in maternal care and anxiety are robust and strongly depend on differences in the AVP system. The seemingly rigid genetic predisposition to hyperanxiety can only be moderately attenuated by the received nurturing.
PLOS ONE | 2009
Patrik Muigg; Sandra Scheiber; Peter Salchner; Mirjam Bunck; Rainer Landgraf; Nicolas Singewald
There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala, hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention.
The Journal of Neuroscience | 2010
Jan M. Deussing; J. Breu; Claudia Kühne; Magdalena Kallnik; Mirjam Bunck; Lisa Glasl; Yi-Chun Yen; M. Schmidt; R. Zurmühlen; A. M. Vogl; V. Gailus-Durner; Helmut Fuchs; Sabine M. Hölter; Carsten T. Wotjak; Rainer Landgraf; M. H. de Angelis; Florian Holsboer; Wolfgang Wurst
Urocortin 3 (UCN3) is strongly expressed in specific nuclei of the rodent brain, at sites distinct from those expressing urocortin 1 and urocortin 2, the other endogenous ligands of corticotropin-releasing hormone receptor type 2 (CRH-R2). To determine the physiological role of UCN3, we generated UCN3-deficient mice, in which the UCN3 open reading frame was replaced by a tau-lacZ reporter gene. By means of this reporter gene, the nucleus parabrachialis and the premammillary nucleus were identified as previously unknown sites of UCN3 expression. Additionally, the introduced reporter gene enabled the visualization of axonal projections of UCN3-expressing neurons from the superior paraolivary nucleus to the inferior colliculus and from the posterodorsal part of the medial amygdala to the principal nucleus of the bed nucleus of the stria terminalis, respectively. The examination of tau-lacZ reporter gene activity throughout the brain underscored a predominant expression of UCN3 in nuclei functionally connected to the accessory olfactory system. Male and female mice were comprehensively phenotyped but none of the applied tests provided indications for a role of UCN3 in the context of hypothalamic–pituitary–adrenocortical axis regulation, anxiety- or depression-related behavior. However, inspired by the prevalent expression throughout the accessory olfactory system, we identified alterations in social discrimination abilities of male and female UCN3 knock-out mice that were also present in male CRH-R2 knock-out mice. In conclusion, our results suggest a novel role for UCN3 and CRH-R2 related to the processing of social cues and to the establishment of social memories.