Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsujiro Osawa is active.

Publication


Featured researches published by Mitsujiro Osawa.


Nature Immunology | 2000

Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes

Akira Shibuya; Norihisa Sakamoto; Yoshio Shimizu; Kazuko Shibuya; Mitsujiro Osawa; Takashi Hiroyama; Helen J. Eyre; Grant R. Sutherland; Yuichi Endo; Teizo Fujita; Tomoyuki Miyabayashi; Seiji Sakano; Takao Tsuji; Eiichi Nakayama; Joseph H. Phillips; Lewis L. Lanier; Hiromitsu Nakauchi

IgM is the first antibody to be produced in a humoral immune response and plays an important role in the primary stages of immunity. Here we describe a mouse Fc receptor, designated Fcα/μR, and its human homolog, that bind both IgM and IgA with intermediate or high affinity. Fcα/μR is constitutively expressed on the majority of B lymphocytes and macrophages. Cross-linking Fcα/μR expressed on a pro-B cell line Ba/F3 transfectant with soluble IgM or IgM-coated microparticles induced internalization of the receptor. Fcα/μR also mediated primary B lymphocyte endocytosis of IgM-coated Staphylococcus aureus. Thus, Fcα/μR is involved in the primary stages of the immune response to microbes.


Nature Medicine | 2008

Functional skeletal muscle regeneration from differentiating embryonic stem cells

Radbod Darabi; Kimberly Gehlbach; Robert M. Bachoo; Shwetha Kamath; Mitsujiro Osawa; Kristine E. Kamm; Michael Kyba; Rita C.R. Perlingeiro

Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-α receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.


Journal of Immunology | 2000

A role for pref-1 and HES-1 in thymocyte development.

Midori Kaneta; Masatake Osawa; Mitsujiro Osawa; Kazuhiro Sudo; Hiromitsu Nakauchi; Andrew G. Farr; Yousuke Takahama

T lymphocyte development requires a series of interactions between developing thymocytes and thymic epithelial (TE) cells. In this paper we show that TE cells in the developing thymus express Pref-1, a Delta-like cell-surface molecule. In fetal thymus organ cultures (FTOC), thymocyte cellularity was increased by the exogenous dimeric Pref-1 fusion protein, but was reduced by the soluble Pref-1 monomer or anti-Pref-1 Ab. Dimeric Pref-1 in FTOC also increased thymocyte expression of the HES-1 transcription factor. Thymocyte cellularity was increased in FTOC repopulated with immature thymocytes overexpressing HES-1, whereas FTOC from HES-1-deficient mice were hypocellular and unresponsive to the Pref-1 dimer. We detected no effects of either Pref-1 or HES-1 on developmental choice among thymocyte lineages. These results indicate that Pref-1 expressed by TE cells and HES-1 expressed by thymocytes are critically involved in supporting thymocyte cellularity.


Nature Genetics | 2004

Conversion of biliary system to pancreatic tissue in Hes1 -deficient mice

Ryo Sumazaki; Nobuyoshi Shiojiri; Shigemi Isoyama; Masayuki Masu; Kazuko Keino-Masu; Mitsujiro Osawa; Hiromitsu Nakauchi; Ryoichiro Kageyama; Akira Matsui

The biliary system, pancreas and liver all develop from the nearby foregut at almost the same time in mammals. The molecular mechanisms that determine the identity of each organ in this complex area are unknown. Hes1 encodes the basic helix-loop-helix protein Hes1 (ref. 1), which represses positive basic helix-loop-helix genes such as Neurog3 (ref. 3). Expression of Hes1 is controlled by the evolutionarily conserved Notch pathway. Hes1 operates as a general negative regulator of endodermal endocrine differentiation, and defects in Notch signaling lead to accelerated pancreatic endocrine differentiation. Mutations in JAG1, encoding a Notch ligand, cause the Alagille syndrome in humans, characterized by poor development of the biliary system, suggesting that the Notch pathway is also involved in normal biliary development. Here we show that Hes1 is expressed in the extrahepatic biliary epithelium throughout development and that Hes1-deficient mice have gallbladder agenesis and severe hypoplasia of extrahepatic bile ducts. Biliary epithelium in Hes1−/− mice ectopically expresses the proendocrine gene Neurog3 (refs. 12,13), differentiates into endocrine and exocrine cells and forms acini and islet-like structures in the mutant bile ducts. Thus, biliary epithelium has the potential for pancreatic differentiation and Hes1 determines biliary organogenesis by preventing the pancreatic differentiation program, probably by directly repressing transcription of Neurog3.


Journal of Experimental Medicine | 2002

Essential and Instructive Roles of GATA Factors in Eosinophil Development

Ryutaro Hirasawa; Ritsuko Shimizu; Satoru Takahashi; Mitsujiro Osawa; Shu Takayanagi; Yuko Kato; Masafumi Onodera; Naoko Minegishi; Masayuki Yamamoto; Katashi Fukao; Hideki Taniguchi; Hiromitsu Nakauchi; Atsushi Iwama

GATA transcription factors are major regulators of hematopoietic and immune system. Among GATA factors, GATA-1, GATA-2, and GATA-3 play crucial roles in the development of erythroid cells, hematopoietic stem, and progenitor cells, and T helper type 2 (Th2) cells, respectively. A high level of GATA-1 and GATA-2 expression has been observed in eosinophils, but their roles in eosinophil development remain uncertain both in vitro and in vivo. Here we show that enforced expression of GATA-1 in human primary myeloid progenitor cells completely switches myeloid cell fate into eosinophils. Expression of GATA-1 exclusively promotes development and terminal maturation of eosinophils. Functional domain analyses revealed that the COOH-terminal finger is essential for this capacity while the other domains are dispensable. Importantly, GATA-1–deficient mice failed to develop eosinophil progenitors in the fetal liver. On the other hand, GATA-2 also showed instructive capacity comparable to GATA-1 in vitro and efficiently compensated for GATA-1 deficiency in terms of eosinophil development in vivo, indicating that proper accumulation of GATA factors is critical for eosinophil development. Taken together, our findings establish essential and instructive roles of GATA factors in eosinophil development. GATA-1 and GATA-2 could be novel molecular targets for therapeutic approaches to allergic inflammation.


Journal of Experimental Medicine | 2002

Reciprocal Roles for CCAAT/Enhancer Binding Protein (C/EBP) and PU.1 Transcription Factors in Langerhans Cell Commitment

Atsushi Iwama; Mitsujiro Osawa; Ryutaro Hirasawa; Noriko Uchiyama; Shin Kaneko; Masafumi Onodera; Kazuko Shibuya; Akira Shibuya; Charles Vinson; Daniel G. Tenen; Hiromitsu Nakauchi

Myeloid progenitor cells give rise to a variety of progenies including dendritic cells. However, the mechanism controlling the diversification of myeloid progenitors into each progeny is largely unknown. PU.1 and CCAAT/enhancing binding protein (C/EBP) family transcription factors have been characterized as key regulators for the development and function of the myeloid system. However, the roles of C/EBP transcription factors have not been fully identified because of functional redundancy among family members. Using high titer–retroviral infection, we demonstrate that a dominant-negative C/EBP completely blocked the granulocyte–macrophage commitment of human myeloid progenitors. Alternatively, Langerhans cell (LC) commitment was markedly facilitated in the absence of tumor necrosis factor (TNF)α, a strong inducer of LC development, whereas expression of wild-type C/EBP in myeloid progenitors promoted granulocytic differentiation, and completely inhibited TNFα-dependent LC development. On the other hand, expression of wild-type PU.1 in myeloid progenitors triggered LC development in the absence of TNFα, and its instructive effect was canceled by coexpressed C/EBP. Our findings establish reciprocal roles for C/EBP and PU.1 in LC development, and provide new insight into the molecular mechanism of LC development, which has not yet been well characterized.


Journal of Experimental Medicine | 2003

Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation.

Katsumi Yotsumoto; Yasushi Okoshi; Kazuko Shibuya; Satoshi Yamazaki; Satoko Tahara-Hanaoka; Shin-ichiro Honda; Mitsujiro Osawa; Asato Kuroiwa; Yoichi Matsuda; Daniel G. Tenen; Atsushi Iwama; Hiromitsu Nakauchi; Akira Shibuya

Immune responses are regulated by opposing positive and negative signals triggered by the interaction of activating and inhibitory cell surface receptors with their ligands. Here, we describe novel paired activating and inhibitory immunoglobulin-like receptors, designated myeloid-associated immunoglobulin-like receptor (MAIR) I and MAIR-II, whose extracellular domains are highly conserved by each other. MAIR-I, expressed on the majority of myeloid cells, including macrophages, granulocytes, mast cells, and dendritic cells, contains the tyrosine-based sorting motif and the immunoreceptor tyrosine-based inhibitory motif-like sequences in the cytoplasmic domain and mediates endocytosis of the receptor and inhibition of IgE-mediated degranulation from mast cells. On the other hand, MAIR-II, expressed on subsets of peritoneal macrophages and B cells, associates with the immunoreceptor tyrosine-based activation motif-bearing adaptor DAP12 and stimulates proinflammatory cytokines and chemokine secretions from macrophages. Thus, MAIR-I and MAIR-II play important regulatory roles in cell signaling and immune responses.


Journal of Experimental Medicine | 2004

Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia

Tomoharu Yasuda; Masaki Shirakata; Atsushi Iwama; Asuka Ishii; Yasuhiro Ebihara; Mitsujiro Osawa; Kazuho Honda; Hisaaki Shinohara; Katsuko Sudo; Kohichiro Tsuji; Hiromitsu Nakauchi; Yoichiro Iwakura; Hisamaru Hirai; Hideaki Oda; Tadashi Yamamoto; Yuji Yamanashi

Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia.


Journal of Experimental Medicine | 2005

Endomucin, a CD34-like sialomucin, marks hematopoietic stem cells throughout development

Azusa Matsubara; Atsushi Iwama; Satoshi Yamazaki; Chie Furuta; Ryutaro Hirasawa; Yohei Morita; Mitsujiro Osawa; Tsutomu Motohashi; Koji Eto; Hideo Ema; Toshio Kitamura; Dietmar Vestweber; Hiromitsu Nakauchi

To detect as yet unidentified cell-surface molecules specific to hematopoietic stem cells (HSCs), a modified signal sequence trap was successfully applied to mouse bone marrow (BM) CD34−c-Kit+Sca-1+Lin− (CD34−KSL) HSCs. One of the identified molecules, Endomucin, is an endothelial sialomucin closely related to CD34. High-level expression of Endomucin was confined to the BM KSL HSCs and progenitor cells, and, importantly, long-term repopulating (LTR)–HSCs were exclusively present in the Endomucin+CD34−KSL population. Notably, in the yolk sac, Endomucin expression separated multipotential hematopoietic cells from committed erythroid progenitors in the cell fraction positive for CD41, an early embryonic hematopoietic marker. Furthermore, developing HSCs in the intraembryonic aorta-gonad-mesonephros (AGM) region were highly enriched in the CD45−CD41+Endomucin+ fraction at day 10.5 of gestation (E10.5) and in the CD45+CD41+Endomucin+ fraction at E11.5. Detailed analyses of these fractions uncovered drastic changes in their BM repopulating capacities as well as in vitro cytokine responsiveness within this narrow time frame. Our findings establish Endomucin as a novel cell-surface marker for LTR-HSCs throughout development and provide a powerful tool in understanding HSC ontogeny.


Blood | 2013

Role of SOX17 in hematopoietic development from human embryonic stem cells

Yaeko Nakajima-Takagi; Mitsujiro Osawa; Motohiko Oshima; Haruna Takagi; Satoru Miyagi; Mitsuhiro Endoh; Takaho A. Endo; Naoya Takayama; Koji Eto; Tetsuro Toyoda; Haruhiko Koseki; Hiromitsu Nakauchi; Atsushi Iwama

To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.

Collaboration


Dive into the Mitsujiro Osawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Kyba

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideo Ema

University of Tsukuba

View shared research outputs
Researchain Logo
Decentralizing Knowledge