Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuyo Ohmura is active.

Publication


Featured researches published by Mitsuyo Ohmura.


Cancer Cell | 2011

CD44 Variant Regulates Redox Status in Cancer Cells by Stabilizing the xCT Subunit of System xc− and Thereby Promotes Tumor Growth

Takatsugu Ishimoto; Osamu Nagano; Toshifumi Yae; Mayumi Tamada; Takeshi Motohara; Hiroko Oshima; Masanobu Oshima; Tatsuya Ikeda; Rika Asaba; Hideki Yagi; Takashi Masuko; Takatsune Shimizu; Tomoki Ishikawa; Kazuharu Kai; Eri Takahashi; Yu Imamura; Yoshifumi Baba; Mitsuyo Ohmura; Makoto Suematsu; Hideo Baba; Hideyuki Saya

CD44 is an adhesion molecule expressed in cancer stem-like cells. Here, we show that a CD44 variant (CD44v) interacts with xCT, a glutamate-cystine transporter, and controls the intracellular level of reduced glutathione (GSH). Human gastrointestinal cancer cells with a high level of CD44 expression showed an enhanced capacity for GSH synthesis and defense against reactive oxygen species (ROS). Ablation of CD44 induced loss of xCT from the cell surface and suppressed tumor growth in a transgenic mouse model of gastric cancer. It also induced activation of p38(MAPK), a downstream target of ROS, and expression of the gene for the cell cycle inhibitor p21(CIP1/WAF1). These findings establish a function for CD44v in regulation of ROS defense and tumor growth.


Nature Communications | 2012

Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell

Toshifumi Yae; Kenji Tsuchihashi; Takatsugu Ishimoto; Takeshi Motohara; Momoko Yoshikawa; Go J. Yoshida; Takeyuki Wada; Takashi Masuko; Kaoru Mogushi; Hiroshi Tanaka; Tsuyoshi Osawa; Yasuharu Kanki; Takashi Minami; Hiroyuki Aburatani; Mitsuyo Ohmura; Akiko Kubo; Makoto Suematsu; Kazuhisa Takahashi; Hideyuki Saya; Osamu Nagano

In cancer metastasis, various environmental stressors attack the disseminating cells. The successful colonization of cancer cells in secondary sites therefore requires the ability of the cells to avoid the consequences of such exposure to the stressors. Here we show that orthotopic transplantation of a CD44 variant isoform-expressing (CD44v(+)) subpopulation of 4T1 breast cancer cells, but not that of a CD44v(-) subpopulation, in mice results in efficient lung metastasis accompanied by expansion of stem-like cancer cells. Such metastasis is dependent on the activity of the cystine transporter xCT, and the stability of this protein is controlled by CD44v. We find that epithelial splicing regulatory protein 1 regulates the expression of CD44v, and knockdown of epithelial splicing regulatory protein 1 in CD44v(+) cells results in an isoform switch from CD44v to CD44 standard (CD44s), leading to reduced cell surface expression of xCT and suppression of lung colonization. The epithelial splicing regulatory protein 1-CD44v-xCT axis is thus a potential therapeutic target for the prevention of metastasis.


Cancer Research | 2012

Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells

Mayumi Tamada; Osamu Nagano; Seiji Tateyama; Mitsuyo Ohmura; Toshifumi Yae; Takatsugu Ishimoto; Eiji Sugihara; Nobuyuki Onishi; Takehiro Yamamoto; Hiroshi Yanagawa; Makoto Suematsu; Hideyuki Saya

An increased glycolytic flux accompanied by activation of the pentose phosphate pathway (PPP) is implicated in chemoresistance of cancer cells. In this study, we found that CD44, a cell surface marker for cancer stem cells, interacts with pyruvate kinase M2 (PKM2) and thereby enhances the glycolytic phenotype of cancer cells that are either deficient in p53 or exposed to hypoxia. CD44 ablation by RNA interference increased metabolic flux to mitochondrial respiration and concomitantly inhibited entry into glycolysis and the PPP. Such metabolic changes induced by CD44 ablation resulted in marked depletion of cellular reduced glutathione (GSH) and increased the intracellular level of reactive oxygen species in glycolytic cancer cells. Furthermore, CD44 ablation enhanced the effect of chemotherapeutic drugs in p53-deficient or hypoxic cancer cells. Taken together, our findings suggest that metabolic modulation by CD44 is a potential therapeutic target for glycolytic cancer cells that manifest drug resistance.


Antioxidants & Redox Signaling | 2010

Paradoxical ATP Elevation in Ischemic Penumbra Revealed by Quantitative Imaging Mass Spectrometry

Katsuji Hattori; Mayumi Kajimura; Takako Hishiki; Tsuyoshi Nakanishi; Akiko Kubo; Yoshiko Nagahata; Mitsuyo Ohmura; Ayako Yachie-Kinoshita; Tomomi Matsuura; Takayuki Morikawa; Tomomi Nakamura; Mitsutoshi Setou; Makoto Suematsu

Local responses of energy metabolism during brain ischemia are too heterogeneous to decipher redox distribution between anoxic core and adjacent salvageable regions such as penumbra. Imaging mass spectrometry combined by capillary electrophoresis/mass spectrometry providing quantitative metabolomics revealed spatio-temporal changes in adenylates and NADH in a mouse middle-cerebral artery occlusion model. Unlike the core where ATP decreased, the penumbra displayed paradoxical elevation of ATP despite the constrained blood supply. It is noteworthy that the NADH elevation in the ischemic region is clearly demarcated by the ATP-depleting core. Results suggest that metabolism in ischemic penumbra does not respond passively to compromised circulation, but actively compensates energy charges.


Nature Communications | 2014

Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway.

Takehiro Yamamoto; Naoharu Takano; Kyoko Ishiwata; Mitsuyo Ohmura; Yoshiko Nagahata; Tomomi Matsuura; Aki Kamata; Kyoko Sakamoto; Tsuyoshi Nakanishi; Akiko Kubo; Takako Hishiki; Makoto Suematsu

Haem oxygenase (HO)-1/carbon monoxide (CO) protects cancer cells from oxidative stress, but the gas-responsive signalling mechanisms remain unknown. Here we show using metabolomics that CO-sensitive methylation of PFKFB3, an enzyme producing fructose 2,6-bisphosphate (F-2,6-BP), serves as a switch to activate phosphofructokinase-1, a rate-limiting glycolytic enzyme. In human leukaemia U937 cells, PFKFB3 is asymmetrically di-methylated at R131 and R134 through modification by protein arginine methyltransferase 1. HO-1 induction or CO results in reduced methylation of PFKFB3 in varied cancer cells to suppress F-2,6-BP, shifting glucose utilization from glycolysis toward the pentose phosphate pathway. Loss of PFKFB3 methylation depends on the inhibitory effects of CO on haem-containing cystathionine β-synthase (CBS). CBS modulates remethylation metabolism, and increases NADPH to supply reduced glutathione, protecting cells from oxidative stress and anti-cancer reagents. Once the methylation of PFKFB3 is reduced, the protein undergoes polyubiquitination and is degraded in the proteasome. These results suggest that the CO/CBS-dependent regulation of PFKFB3 methylation determines directional glucose utilization to ensure resistance against oxidative stress for cancer cell survival.


Analytical and Bioanalytical Chemistry | 2011

Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice

Akiko Kubo; Mitsuyo Ohmura; Masatoshi Wakui; Takahiro Harada; Shigeki Kajihara; Kiyoshi Ogawa; Hiroshi Suemizu; Masato Nakamura; Mitsutoshi Setou; Makoto Suematsu

Analyses of energy metabolism in human cancer have been difficult because of rapid turnover of the metabolites and difficulties in reducing time for collecting clinical samples under surgical procedures. Utilization of xenograft transplantation of human-derived colon cancer HCT116 cells in spleens of superimmunodeficient NOD/SCID/IL-2Rγnull (NOG) mice led us to establish an experimental model of hepatic micrometastasis of the solid tumor, whereby analyses of the tissue sections collected by snap-frozen procedures through newly developed microscopic imaging mass spectrometry (MIMS) revealed distinct spatial distribution of a variety of metabolites. To perform intergroup comparison of the signal intensities of metabolites among different tissue sections collected from mice in fed states, we combined matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI–TOF-IMS) and capillary electrophoresis–mass spectrometry (CE–MS), to determine the apparent contents of individual metabolites in serial tissue sections. The results indicated significant elevation of ATP and energy charge in both metastases and the parenchyma of the tumor-bearing livers. To note were significant increases in UDP-N-acetyl hexosamines, and reduced and oxidized forms of glutathione in the metastatic foci versus the liver parenchyma. These findings thus provided a potentially important method for characterizing the properties of metabolic systems of human-derived cancer and the host tissues in vivo.


Nature Communications | 2016

Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

Yasuaki Kabe; Takanori Nakane; Ikko Koike; Tatsuya Yamamoto; Yuki Sugiura; Erisa Harada; Kenji Sugase; Tatsuro Shimamura; Mitsuyo Ohmura; Kazumi Muraoka; Ayumi Yamamoto; Takeshi Uchida; So Iwata; Yuki Yamaguchi; Elena Krayukhina; Masanori Noda; Hiroshi Handa; Koichiro Ishimori; Susumu Uchiyama; Takuya Kobayashi; Makoto Suematsu

Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.


Molecular Cancer Research | 2013

Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo

Yan Bao; Kuniaki Mukai; Takako Hishiki; Akiko Kubo; Mitsuyo Ohmura; Yuki Sugiura; Tomomi Matsuura; Yoshiko Nagahata; Noriyo Hayakawa; Takehiro Yamamoto; Ryo Fukuda; Hideyuki Saya; Makoto Suematsu; Yoji Andrew Minamishima

Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry. Results showed that cells in G1-phase exhibited higher concentrations of ATP, NADH, and UDP-N-acetylglucosamine than those in S and G2–M phases, suggesting accelerated glycolysis in G1-phase cells in vivo. Quantitative determination of metabolites in cells synchronized in S, G2–M, and G1 phases suggested that efflux of lactate was elevated significantly in G1-phase. By contrast, ATP production in G2–M was highly dependent on mitochondrial respiration, whereas cells in S-phase mostly exhibited an intermediary energy metabolism between G1 and G2–M phases. Isogenic cells carrying a p53-null mutation appeared more active in glycolysis throughout the cell cycle than wild-type cells. Thus, as the cell cycle progressed from G2–M to G1 phases, the dependency of energy production on glycolysis was increased while the mitochondrial energy production was reciprocally decreased. Implications: These results shed light on distinct features of the phase-specific phenotypes of metabolic systems in cancer cells. Mol Cancer Res; 11(9); 973–85. ©2013 AACR.


Cancer Research | 2016

The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(

Kenji Tsuchihashi; Shogo Okazaki; Mitsuyo Ohmura; Miyuki Ishikawa; Oltea Sampetrean; Nobuyuki Onishi; Hiroaki Wakimoto; Momoko Yoshikawa; Ryo Seishima; Yoshimi Iwasaki; Takayuki Morikawa; Shinya Abe; Ayumi Takao; Misato Shimizu; Takashi Masuko; Motoo Nagane; Frank B. Furnari; Tetsu Akiyama; Makoto Suematsu; Eishi Baba; Koichi Akashi; Hideyuki Saya; Osamu Nagano

Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.


Nitric Oxide | 2015

Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry

Mitsuyo Ohmura; Takako Hishiki; Takehiro Yamamoto; Tsuyoshi Nakanishi; Akiko Kubo; Kenji Tsuchihashi; Mayumi Tamada; Sakino Toue; Yasuaki Kabe; Hideyuki Saya; Makoto Suematsu

CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue.

Collaboration


Dive into the Mitsuyo Ohmura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Kawai

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge