Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiko Nagahata is active.

Publication


Featured researches published by Yoshiko Nagahata.


Cell Stem Cell | 2013

Distinct Metabolic Flow Enables Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived Cardiomyocytes

Shugo Tohyama; Fumiyuki Hattori; Motoaki Sano; Takako Hishiki; Yoshiko Nagahata; Tomomi Matsuura; Hisayuki Hashimoto; Tomoyuki Suzuki; Hiromi Yamashita; Yusuke Satoh; Toru Egashira; Tomohisa Seki; Naoto Muraoka; Hiroyuki Yamakawa; Yasuyuki Ohgino; Tomofumi Tanaka; Masatoshi Yoichi; Shinsuke Yuasa; Mitsushige Murata; Makoto Suematsu; Keiichi Fukuda

Heart disease remains a major cause of death despite advances in medical technology. Heart-regenerative therapy that uses pluripotent stem cells (PSCs) is a potentially promising strategy for patients with heart disease, but the inability to generate highly purified cardiomyocytes in sufficient quantities has been a barrier to realizing this potential. Here, we report a nongenetic method for mass-producing cardiomyocytes from mouse and human PSC derivatives that is based on the marked biochemical differences in glucose and lactate metabolism between cardiomyocytes and noncardiomyocytes, including undifferentiated cells. We cultured PSC derivatives with glucose-depleted culture medium containing abundant lactate and found that only cardiomyocytes survived. Using this approach, we obtained cardiomyocytes of up to 99% purity that did not form tumors after transplantation. We believe that our technological method broadens the range of potential applications for purified PSC-derived cardiomyocytes and could facilitate progress toward PSC-based cardiac regenerative therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway

Takayuki Morikawa; Mayumi Kajimura; Tomomi Nakamura; Takako Hishiki; Tsuyoshi Nakanishi; Yoshinori Yukutake; Yoshiko Nagahata; Mami Ishikawa; Katsuji Hattori; Toshiki Takenouchi; Takao Takahashi; Isao Ishii; Kazuko Matsubara; Yasuaki Kabe; Shinichiro Uchiyama; Eiichiro Nagata; Moataz M. Gadalla; Solomon H. Snyder; Makoto Suematsu

Enhancement of cerebral blood flow by hypoxia is critical for brain function, but signaling systems underlying its regulation have been unclear. We report a pathway mediating hypoxia-induced cerebral vasodilation in studies monitoring vascular disposition in cerebellar slices and in intact mouse brains using two-photon intravital laser scanning microscopy. In this cascade, hypoxia elicits cerebral vasodilation via the coordinate actions of H2S formed by cystathionine β-synthase (CBS) and CO generated by heme oxygenase (HO)-2. Hypoxia diminishes CO generation by HO-2, an oxygen sensor. The constitutive CO physiologically inhibits CBS, and hypoxia leads to increased levels of H2S that mediate the vasodilation of precapillary arterioles. Mice with targeted deletion of HO-2 or CBS display impaired vascular responses to hypoxia. Thus, in intact adult brain cerebral cortex of HO-2–null mice, imaging mass spectrometry reveals an impaired ability to maintain ATP levels on hypoxia.


Circulation Research | 2009

Metabolic Remodeling Induced by Mitochondrial Aldehyde Stress Stimulates Tolerance to Oxidative Stress in the Heart

Jin Endo; Motoaki Sano; Takaharu Katayama; Takako Hishiki; Ken Shinmura; Shintaro Morizane; Tomohiro Matsuhashi; Yoshinori Katsumata; Yan Zhang; Hideyuki Ito; Yoshiko Nagahata; Satori A. Marchitti; Kiyomi Nishimaki; Alexander M. Wolf; Hiroki Nakanishi; Fumiyuki Hattori; Vasilis Vasiliou; Takeshi Adachi; Ikuroh Ohsawa; Ryo Taguchi; Yoshio Hirabayashi; Shigeo Ohta; Makoto Suematsu; Satoshi Ogawa; Keiichi Fukuda

Rationale: Aldehyde accumulation is regarded as a pathognomonic feature of oxidative stress–associated cardiovascular disease. Objective: We investigated how the heart compensates for the accelerated accumulation of aldehydes. Methods and Results: Aldehyde dehydrogenase 2 (ALDH2) has a major role in aldehyde detoxification in the mitochondria, a major source of aldehydes. Transgenic (Tg) mice carrying an Aldh2 gene with a single nucleotide polymorphism (Aldh2*2) were developed. This polymorphism has a dominant-negative effect and the Tg mice exhibited impaired ALDH activity against a broad range of aldehydes. Despite a shift toward the oxidative state in mitochondrial matrices, Aldh2*2 Tg hearts displayed normal left ventricular function by echocardiography and, because of metabolic remodeling, an unexpected tolerance to oxidative stress induced by ischemia/reperfusion injury. Mitochondrial aldehyde stress stimulated eukaryotic translation initiation factor 2&agr; phosphorylation. Subsequent translational and transcriptional activation of activating transcription factor-4 promoted the expression of enzymes involved in amino acid biosynthesis and transport, ultimately providing precursor amino acids for glutathione biosynthesis. Intracellular glutathione levels were increased 1.37-fold in Aldh2*2 Tg hearts compared with wild-type controls. Heterozygous knockout of Atf4 blunted the increase in intracellular glutathione levels in Aldh2*2 Tg hearts, thereby attenuating the oxidative stress–resistant phenotype. Furthermore, glycolysis and NADPH generation via the pentose phosphate pathway were activated in Aldh2*2 Tg hearts. (NADPH is required for the recycling of oxidized glutathione.) Conclusions: The findings of the present study indicate that mitochondrial aldehyde stress in the heart induces metabolic remodeling, leading to activation of the glutathione–redox cycle, which confers resistance against acute oxidative stress induced by ischemia/reperfusion.


Antioxidants & Redox Signaling | 2010

Paradoxical ATP Elevation in Ischemic Penumbra Revealed by Quantitative Imaging Mass Spectrometry

Katsuji Hattori; Mayumi Kajimura; Takako Hishiki; Tsuyoshi Nakanishi; Akiko Kubo; Yoshiko Nagahata; Mitsuyo Ohmura; Ayako Yachie-Kinoshita; Tomomi Matsuura; Takayuki Morikawa; Tomomi Nakamura; Mitsutoshi Setou; Makoto Suematsu

Local responses of energy metabolism during brain ischemia are too heterogeneous to decipher redox distribution between anoxic core and adjacent salvageable regions such as penumbra. Imaging mass spectrometry combined by capillary electrophoresis/mass spectrometry providing quantitative metabolomics revealed spatio-temporal changes in adenylates and NADH in a mouse middle-cerebral artery occlusion model. Unlike the core where ATP decreased, the penumbra displayed paradoxical elevation of ATP despite the constrained blood supply. It is noteworthy that the NADH elevation in the ischemic region is clearly demarcated by the ATP-depleting core. Results suggest that metabolism in ischemic penumbra does not respond passively to compromised circulation, but actively compensates energy charges.


Nature Communications | 2014

Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway.

Takehiro Yamamoto; Naoharu Takano; Kyoko Ishiwata; Mitsuyo Ohmura; Yoshiko Nagahata; Tomomi Matsuura; Aki Kamata; Kyoko Sakamoto; Tsuyoshi Nakanishi; Akiko Kubo; Takako Hishiki; Makoto Suematsu

Haem oxygenase (HO)-1/carbon monoxide (CO) protects cancer cells from oxidative stress, but the gas-responsive signalling mechanisms remain unknown. Here we show using metabolomics that CO-sensitive methylation of PFKFB3, an enzyme producing fructose 2,6-bisphosphate (F-2,6-BP), serves as a switch to activate phosphofructokinase-1, a rate-limiting glycolytic enzyme. In human leukaemia U937 cells, PFKFB3 is asymmetrically di-methylated at R131 and R134 through modification by protein arginine methyltransferase 1. HO-1 induction or CO results in reduced methylation of PFKFB3 in varied cancer cells to suppress F-2,6-BP, shifting glucose utilization from glycolysis toward the pentose phosphate pathway. Loss of PFKFB3 methylation depends on the inhibitory effects of CO on haem-containing cystathionine β-synthase (CBS). CBS modulates remethylation metabolism, and increases NADPH to supply reduced glutathione, protecting cells from oxidative stress and anti-cancer reagents. Once the methylation of PFKFB3 is reduced, the protein undergoes polyubiquitination and is degraded in the proteasome. These results suggest that the CO/CBS-dependent regulation of PFKFB3 methylation determines directional glucose utilization to ensure resistance against oxidative stress for cancer cell survival.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Capillary Endothelial Fatty Acid Binding Proteins 4 and 5 Play a Critical Role in Fatty Acid Uptake in Heart and Skeletal Muscle

Tatsuya Iso; Kazuhisa Maeda; Hirofumi Hanaoka; Toshihiro Suga; Kosaku Goto; Mas Rizky A. A. Syamsunarno; Takako Hishiki; Yoshiko Nagahata; Hiroki Matsui; Masashi Arai; Aiko Yamaguchi; Nada A. Abumrad; Motoaki Sano; Makoto Suematsu; Keigo Endo; Gökhan S. Hotamisligil; Masahiko Kurabayashi

Objective—Fatty acids (FAs) are the major substrate for energy production in the heart. Here, we hypothesize that capillary endothelial fatty acid binding protein 4 (FABP4) and FABP5 play an important role in providing sufficient FAs to the myocardium. Approach and Results—Both FABP4/5 were abundantly expressed in capillary endothelium in the heart and skeletal muscle. The uptake of a FA analogue, 125I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid, was significantly reduced in these tissues in double-knockout (DKO) mice for FABP4/5 compared with wild-type mice. In contrast, the uptake of a glucose analogue, 18F-fluorodeoxyglucose, was remarkably increased in DKO mice. The expression of transcripts for the oxidative catabolism of FAs was reduced during fasting, whereas transcripts for the glycolytic pathway were not altered in DKO hearts. Notably, metabolome analysis revealed that phosphocreatine and ADP levels were significantly lower in DKO hearts, whereas ATP content was kept at a normal level. The protein expression levels of the glucose transporter Glut4 and the phosphorylated form of phosphofructokinase-2 were increased in DKO hearts, whereas the phosphorylation of insulin receptor-&bgr; and Akt was comparable between wild-type and DKO hearts during fasting, suggesting that a dramatic increase in glucose usage during fasting is insulin independent and is at least partly attributed to the post-transcriptional and allosteric regulation of key proteins that regulate glucose uptake and glycolysis. Conclusions—Capillary endothelial FABP4/5 are required for FA transport into FA-consuming tissues that include the heart. These findings identify FABP4/5 as promising targets for controlling the metabolism of energy substrates in FA-consuming organs that have muscle-type continuous capillary.


Molecular Cancer Research | 2013

Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo

Yan Bao; Kuniaki Mukai; Takako Hishiki; Akiko Kubo; Mitsuyo Ohmura; Yuki Sugiura; Tomomi Matsuura; Yoshiko Nagahata; Noriyo Hayakawa; Takehiro Yamamoto; Ryo Fukuda; Hideyuki Saya; Makoto Suematsu; Yoji Andrew Minamishima

Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry. Results showed that cells in G1-phase exhibited higher concentrations of ATP, NADH, and UDP-N-acetylglucosamine than those in S and G2–M phases, suggesting accelerated glycolysis in G1-phase cells in vivo. Quantitative determination of metabolites in cells synchronized in S, G2–M, and G1 phases suggested that efflux of lactate was elevated significantly in G1-phase. By contrast, ATP production in G2–M was highly dependent on mitochondrial respiration, whereas cells in S-phase mostly exhibited an intermediary energy metabolism between G1 and G2–M phases. Isogenic cells carrying a p53-null mutation appeared more active in glycolysis throughout the cell cycle than wild-type cells. Thus, as the cell cycle progressed from G2–M to G1 phases, the dependency of energy production on glycolysis was increased while the mitochondrial energy production was reciprocally decreased. Implications: These results shed light on distinct features of the phase-specific phenotypes of metabolic systems in cancer cells. Mol Cancer Res; 11(9); 973–85. ©2013 AACR.


Free Radical Biology and Medicine | 2012

Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria.

Hidenori Yamada; Noriyuki Akahoshi; Shotaro Kamata; Yoshifumi Hagiya; Takako Hishiki; Yoshiko Nagahata; Tomomi Matsuura; Naoharu Takano; Masatomo Mori; Yasuki Ishizaki; Takashi Izumi; Yoshito Kumagai; Tadashi Kasahara; Makoto Suematsu; Isao Ishii

Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H(2)S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine γ-lyase-deficient (Cth(-/-)) mice. Wild-type and Cth(-/-) mice were fed a standard diet (1 × Met: 0.44%) or a high-methionine diet (3 × Met or 6 × Met), and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresis- or liquid chromatography-mass spectrometry and sulfur-detecting gas chromatography. The 6 × Met-fed Cth(-/-) (not 1 × Met-fed Cth(-/-) or 6 × Met-fed wild type) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation, inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6 × Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in Cth(-/-) mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in 6 × Met-fed wild-type mice and Cth(-/-) mice, those of glutathione, taurine/hypotaurine, and H(2)S became lower and serum levels of homocysteine became much higher in 6 × Met-fed Cth(-/-) mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate, in addition to synthesizing cysteine-derived antioxidants to counteract accumulated pro-oxidants such as methionine sulfoxide and homocysteine.


PLOS ONE | 2013

A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting

Mas Rizky A. A. Syamsunarno; Tatsuya Iso; Hirofumi Hanaoka; Aiko Yamaguchi; Masaru Obokata; Norimichi Koitabashi; Kosaku Goto; Takako Hishiki; Yoshiko Nagahata; Hiroki Matsui; Motoaki Sano; Masaki Kobayashi; Osamu Kikuchi; Tsutomu Sasaki; Kazuhisa Maeda; Masami Murakami; Tadahiro Kitamura; Makoto Suematsu; YoshitoTsushima; Keigo Endo; Gökhan S. Hotamisligil; Masahiko Kurabayashi

During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis.


Journal of Cerebral Blood Flow and Metabolism | 2015

Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia

Toshiki Takenouchi; Yuki Sugiura; Takayuki Morikawa; Tsuyoshi Nakanishi; Yoshiko Nagahata; Tadao Sugioka; Kurara Honda; Akiko Kubo; Takako Hishiki; Tomomi Matsuura; Takao Hoshino; Takao Takahashi; Makoto Suematsu; Mayumi Kajimura

Although therapeutic hypothermia is known to improve neurologic outcomes after perinatal cerebral hypoxia-ischemia, etiology remains unknown. To decipher the mechanisms whereby hypothermia regulates metabolic dynamics in different brain regions, we used a two-step approach: a metabolomics to target metabolic pathways responding to cooling, and a quantitative imaging mass spectrometry to reveal spatial alterations in targeted metabolites in the brain. Seven-day postnatal rats underwent the permanent ligation of the left common carotid artery followed by exposure to 8% O2 for 2.5 hours. The pups were returned to normoxic conditions at either 38°C or 30°C for 3 hours. The brain metabolic states were rapidly fixed using in situ freezing. The profiling of 107 metabolites showed that hypothermia diminishes the carbon biomass related to acetyl moieties, such as pyruvate and acetyl-CoA; conversely, it increases deacetylated metabolites, such as carnitine and choline. Quantitative imaging mass spectrometry demarcated that hypothermia diminishes the acetylcholine contents specifically in hippocampus and amygdala. Such decreases were associated with an inverse increase in carnitine in the same anatomic regions. These findings imply that hypothermia achieves its neuroprotective effects by mediating the cellular acetylation status through a coordinated suppression of acetyl-CoA, which resides in metabolic junctions of glycolysis, amino-acid catabolism, and ketolysis.

Collaboration


Dive into the Yoshiko Nagahata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge