Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takako Hishiki is active.

Publication


Featured researches published by Takako Hishiki.


Cell Stem Cell | 2013

Distinct Metabolic Flow Enables Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived Cardiomyocytes

Shugo Tohyama; Fumiyuki Hattori; Motoaki Sano; Takako Hishiki; Yoshiko Nagahata; Tomomi Matsuura; Hisayuki Hashimoto; Tomoyuki Suzuki; Hiromi Yamashita; Yusuke Satoh; Toru Egashira; Tomohisa Seki; Naoto Muraoka; Hiroyuki Yamakawa; Yasuyuki Ohgino; Tomofumi Tanaka; Masatoshi Yoichi; Shinsuke Yuasa; Mitsushige Murata; Makoto Suematsu; Keiichi Fukuda

Heart disease remains a major cause of death despite advances in medical technology. Heart-regenerative therapy that uses pluripotent stem cells (PSCs) is a potentially promising strategy for patients with heart disease, but the inability to generate highly purified cardiomyocytes in sufficient quantities has been a barrier to realizing this potential. Here, we report a nongenetic method for mass-producing cardiomyocytes from mouse and human PSC derivatives that is based on the marked biochemical differences in glucose and lactate metabolism between cardiomyocytes and noncardiomyocytes, including undifferentiated cells. We cultured PSC derivatives with glucose-depleted culture medium containing abundant lactate and found that only cardiomyocytes survived. Using this approach, we obtained cardiomyocytes of up to 99% purity that did not form tumors after transplantation. We believe that our technological method broadens the range of potential applications for purified PSC-derived cardiomyocytes and could facilitate progress toward PSC-based cardiac regenerative therapy.


Molecular Brain | 2012

Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue

Yoichi Imaizumi; Yohei Okada; Wado Akamatsu; Masato Koike; Naoko Kuzumaki; Hideki Hayakawa; Tomoko Nihira; Tetsuro Kobayashi; Manabu Ohyama; Shigeto Sato; Masashi Takanashi; Manabu Funayama; Akiyoshi Hirayama; Tomoyoshi Soga; Takako Hishiki; Makoto Suematsu; Takuya Yagi; Daisuke Ito; Arifumi Kosakai; Kozo Hayashi; Masanobu Shouji; Atsushi Nakanishi; Norihiro Suzuki; Mizuno Y; Noboru Mizushima; Masayuki Amagai; Yasuo Uchiyama; Hideki Mochizuki; Nobutaka Hattori; Hideyuki Okano

BackgroundParkinson’s disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2.ResultsHere, we generated induced pluripotent stem cells (iPSCs) from two PARK2 patients. PARK2 iPSC-derived neurons showed increased oxidative stress and enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. iPSC-derived neurons, but not fibroblasts or iPSCs, exhibited abnormal mitochondrial morphology and impaired mitochondrial homeostasis. Although PARK2 patients rarely exhibit Lewy body (LB) formation with an accumulation of α-synuclein, α-synuclein accumulation was observed in the postmortem brain of one of the donor patients. This accumulation was also seen in the iPSC-derived neurons in the same patient.ConclusionsThus, pathogenic changes in the brain of a PARK2 patient were recapitulated using iPSC technology. These novel findings reveal mechanistic insights into the onset of PARK2 and identify novel targets for drug screening and potential modified therapies for PD.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway

Takayuki Morikawa; Mayumi Kajimura; Tomomi Nakamura; Takako Hishiki; Tsuyoshi Nakanishi; Yoshinori Yukutake; Yoshiko Nagahata; Mami Ishikawa; Katsuji Hattori; Toshiki Takenouchi; Takao Takahashi; Isao Ishii; Kazuko Matsubara; Yasuaki Kabe; Shinichiro Uchiyama; Eiichiro Nagata; Moataz M. Gadalla; Solomon H. Snyder; Makoto Suematsu

Enhancement of cerebral blood flow by hypoxia is critical for brain function, but signaling systems underlying its regulation have been unclear. We report a pathway mediating hypoxia-induced cerebral vasodilation in studies monitoring vascular disposition in cerebellar slices and in intact mouse brains using two-photon intravital laser scanning microscopy. In this cascade, hypoxia elicits cerebral vasodilation via the coordinate actions of H2S formed by cystathionine β-synthase (CBS) and CO generated by heme oxygenase (HO)-2. Hypoxia diminishes CO generation by HO-2, an oxygen sensor. The constitutive CO physiologically inhibits CBS, and hypoxia leads to increased levels of H2S that mediate the vasodilation of precapillary arterioles. Mice with targeted deletion of HO-2 or CBS display impaired vascular responses to hypoxia. Thus, in intact adult brain cerebral cortex of HO-2–null mice, imaging mass spectrometry reveals an impaired ability to maintain ATP levels on hypoxia.


Circulation Research | 2009

Metabolic Remodeling Induced by Mitochondrial Aldehyde Stress Stimulates Tolerance to Oxidative Stress in the Heart

Jin Endo; Motoaki Sano; Takaharu Katayama; Takako Hishiki; Ken Shinmura; Shintaro Morizane; Tomohiro Matsuhashi; Yoshinori Katsumata; Yan Zhang; Hideyuki Ito; Yoshiko Nagahata; Satori A. Marchitti; Kiyomi Nishimaki; Alexander M. Wolf; Hiroki Nakanishi; Fumiyuki Hattori; Vasilis Vasiliou; Takeshi Adachi; Ikuroh Ohsawa; Ryo Taguchi; Yoshio Hirabayashi; Shigeo Ohta; Makoto Suematsu; Satoshi Ogawa; Keiichi Fukuda

Rationale: Aldehyde accumulation is regarded as a pathognomonic feature of oxidative stress–associated cardiovascular disease. Objective: We investigated how the heart compensates for the accelerated accumulation of aldehydes. Methods and Results: Aldehyde dehydrogenase 2 (ALDH2) has a major role in aldehyde detoxification in the mitochondria, a major source of aldehydes. Transgenic (Tg) mice carrying an Aldh2 gene with a single nucleotide polymorphism (Aldh2*2) were developed. This polymorphism has a dominant-negative effect and the Tg mice exhibited impaired ALDH activity against a broad range of aldehydes. Despite a shift toward the oxidative state in mitochondrial matrices, Aldh2*2 Tg hearts displayed normal left ventricular function by echocardiography and, because of metabolic remodeling, an unexpected tolerance to oxidative stress induced by ischemia/reperfusion injury. Mitochondrial aldehyde stress stimulated eukaryotic translation initiation factor 2&agr; phosphorylation. Subsequent translational and transcriptional activation of activating transcription factor-4 promoted the expression of enzymes involved in amino acid biosynthesis and transport, ultimately providing precursor amino acids for glutathione biosynthesis. Intracellular glutathione levels were increased 1.37-fold in Aldh2*2 Tg hearts compared with wild-type controls. Heterozygous knockout of Atf4 blunted the increase in intracellular glutathione levels in Aldh2*2 Tg hearts, thereby attenuating the oxidative stress–resistant phenotype. Furthermore, glycolysis and NADPH generation via the pentose phosphate pathway were activated in Aldh2*2 Tg hearts. (NADPH is required for the recycling of oxidized glutathione.) Conclusions: The findings of the present study indicate that mitochondrial aldehyde stress in the heart induces metabolic remodeling, leading to activation of the glutathione–redox cycle, which confers resistance against acute oxidative stress induced by ischemia/reperfusion.


Hepatology | 2009

Cystathionine β-synthase as a carbon monoxide–sensitive regulator of bile excretion†

Tsunehiro Shintani; Takuya Iwabuchi; Tomoyoshi Soga; Yuichiro Kato; Takehiro Yamamoto; Naoharu Takano; Takako Hishiki; Yuki Ueno; Satsuki Ikeda; Tadayuki Sakuragawa; Kazuo Ishikawa; Nobuhito Goda; Yuko Kitagawa; Mayumi Kajimura; Kenji Matsumoto; Makoto Suematsu

Carbon monoxide (CO) is a stress‐inducible gas generated by heme oxygenase (HO) eliciting adaptive responses against toxicants; however, mechanisms for its reception remain unknown. Serendipitous observation in metabolome analysis in CO‐overproducing livers suggested roles of cystathionine β‐synthase (CBS) that rate‐limits transsulfuration pathway and H2S generation, for the gas‐responsive receptor. Studies using recombinant CBS indicated that CO binds to the prosthetic heme, stabilizing 6‐coordinated CO‐Fe(II)‐histidine complex to block the activity, whereas nitric oxide (NO) forms 5‐coordinated structure without inhibiting it. The CO‐overproducing livers down‐regulated H2S to stimulate HCO3−‐dependent choleresis: these responses were attenuated by blocking HO or by donating H2S. Livers of heterozygous CBS knockout mice neither down‐regulated H2S nor exhibited the choleresis while overproducing CO. In the mouse model of estradiol‐induced cholestasis, CO overproduction by inducing HO‐1 significantly improved the bile output through stimulating HCO3− excretion; such a choleretic response did not occur in the knockout mice. Conclusion: Results collected from metabolome analyses suggested that CBS serves as a CO‐sensitive modulator of H2S to support biliary excretion, shedding light on a putative role of the enzyme for stress‐elicited adaptive response against bile‐dependent detoxification processes. (HEPATOLOGY 2009;49:141‐150.)


Journal of Molecular and Cellular Cardiology | 2010

4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway.

Yan Zhang; Motoaki Sano; Ken Shinmura; Kayoko Tamaki; Yoshinori Katsumata; Tomohiro Matsuhashi; Shintaro Morizane; Hideyuki Ito; Takako Hishiki; Jin Endo; Heping Zhou; Shinsuke Yuasa; Ruri Kaneda; Makoto Suematsu; Keiichi Fukuda

Reactive oxygen species (ROS) attack polyunsaturated fatty acids of the membrane and trigger lipid peroxidation, which results in the generation of alpha,beta-unsaturated aldehydes, such as 4-hydroxy-2-nonenal (4-HNE). There is compelling evidence that high concentrations of aldehydes are responsible for much of the damage elicited by cardiac ischemia-reperfusion injury, while sublethal concentrations of aldehydes stimulate stress resistance pathways, to achieve cardioprotection. We investigated the mechanism of cardioprotection mediated by 4-HNE. For cultured cardiomyocytes, 4-HNE was cytotoxic at higher concentrations (>or=20 microM) but had no appreciable cytotoxicity at lower concentrations. Notably, a sublethal concentration (5muM) of 4-HNE primed cardiomyocytes to become resistant to cytotoxic concentrations of 4-HNE. 4-HNE induced nuclear translocation of transcription factor NF-E2-related factor 2 (Nrf2), and enhanced the expression of gamma-glutamylcysteine ligase (GCL) and the core subunit of the Xc(-) high-affinity cystine transporter (xCT), thereby increasing 1.45-fold the intracellular GSH levels. Cardiomyocytes treated with either Nrf2-specific siRNA or the GCL inhibitor l-buthionine sulfoximine (BSO) were less tolerant to 4-HNE. Moreover, the cardioprotective effect of 4-HNE pretreatment against subsequent glucose-free anoxia followed by reoxygenation was completely abolished in these cells. Intravenous administration of 4-HNE (4 mg/kg) activated Nrf2 in the heart and increased the intramyocardial GSH content, and consequently improved the functional recovery of the left ventricle following ischemia-reperfusion in Langendorff-perfused hearts. This cardioprotective effect of 4-HNE was not observed for Nrf2-knockout mice. In summary, 4-HNE activates Nrf2-mediated gene expression and stimulates GSH biosynthesis, thereby conferring on cardiomyocytes protection against ischemia-reperfusion injury.


Antioxidants & Redox Signaling | 2010

Paradoxical ATP Elevation in Ischemic Penumbra Revealed by Quantitative Imaging Mass Spectrometry

Katsuji Hattori; Mayumi Kajimura; Takako Hishiki; Tsuyoshi Nakanishi; Akiko Kubo; Yoshiko Nagahata; Mitsuyo Ohmura; Ayako Yachie-Kinoshita; Tomomi Matsuura; Takayuki Morikawa; Tomomi Nakamura; Mitsutoshi Setou; Makoto Suematsu

Local responses of energy metabolism during brain ischemia are too heterogeneous to decipher redox distribution between anoxic core and adjacent salvageable regions such as penumbra. Imaging mass spectrometry combined by capillary electrophoresis/mass spectrometry providing quantitative metabolomics revealed spatio-temporal changes in adenylates and NADH in a mouse middle-cerebral artery occlusion model. Unlike the core where ATP decreased, the penumbra displayed paradoxical elevation of ATP despite the constrained blood supply. It is noteworthy that the NADH elevation in the ischemic region is clearly demarcated by the ATP-depleting core. Results suggest that metabolism in ischemic penumbra does not respond passively to compromised circulation, but actively compensates energy charges.


Nature Communications | 2014

Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway.

Takehiro Yamamoto; Naoharu Takano; Kyoko Ishiwata; Mitsuyo Ohmura; Yoshiko Nagahata; Tomomi Matsuura; Aki Kamata; Kyoko Sakamoto; Tsuyoshi Nakanishi; Akiko Kubo; Takako Hishiki; Makoto Suematsu

Haem oxygenase (HO)-1/carbon monoxide (CO) protects cancer cells from oxidative stress, but the gas-responsive signalling mechanisms remain unknown. Here we show using metabolomics that CO-sensitive methylation of PFKFB3, an enzyme producing fructose 2,6-bisphosphate (F-2,6-BP), serves as a switch to activate phosphofructokinase-1, a rate-limiting glycolytic enzyme. In human leukaemia U937 cells, PFKFB3 is asymmetrically di-methylated at R131 and R134 through modification by protein arginine methyltransferase 1. HO-1 induction or CO results in reduced methylation of PFKFB3 in varied cancer cells to suppress F-2,6-BP, shifting glucose utilization from glycolysis toward the pentose phosphate pathway. Loss of PFKFB3 methylation depends on the inhibitory effects of CO on haem-containing cystathionine β-synthase (CBS). CBS modulates remethylation metabolism, and increases NADPH to supply reduced glutathione, protecting cells from oxidative stress and anti-cancer reagents. Once the methylation of PFKFB3 is reduced, the protein undergoes polyubiquitination and is degraded in the proteasome. These results suggest that the CO/CBS-dependent regulation of PFKFB3 methylation determines directional glucose utilization to ensure resistance against oxidative stress for cancer cell survival.


Journal of Biological Chemistry | 2007

Roles of Hemoglobin Allostery in Hypoxia-induced Metabolic Alterations in Erythrocytes SIMULATION AND ITS VERIFICATION BY METABOLOME ANALYSIS

Ayako Kinoshita; Kosuke Tsukada; Tomoyoshi Soga; Takako Hishiki; Yuki Ueno; Yoichi Nakayama; Masaru Tomita; Makoto Suematsu

When erythrocytes are exposed to hypoxia, hemoglobin (Hb) stabilizes in the T-state by capturing 2,3-bisphosphoglycerate. This process could reduce the intracellular pool of glycolytic substrates, jeopardizing cellular energetics. Recent observations suggest that hypoxia-induced activation of glycolytic enzymes is correlated with their release from Band III (BIII) on the cell membrane. Based on these data, we developed a mathematical model of erythrocyte metabolism and compared hypoxia-induced differences in predicted activities of the enzymes, their products, and cellular energetics between models with and without the interaction of Hb with BIII. The models predicted that the allostery-dependent Hb interaction with BIII accelerates consumption of upstream glycolytic substrates such as glucose 6-phosphate and increases downstream products such as phosphoenolpyruvate. This prediction was consistent with metabolomic data from capillary electrophoresis mass spectrometry. The hypoxia-induced alterations in the metabolites resulted from acceleration of glycolysis, as judged by increased conversion of [13C]glucose to [13C]lactate. The allostery-dependent interaction of Hb with BIII appeared to contribute not only to maintenance of energy charge but also to further synthesis of 2,3-bisphosphoglycerate, which could help sustain stabilization of T-state Hb during hypoxia. Furthermore, such an activation of glycolysis was not observed when Hb was stabilized in R-state by treating the cells with CO. These results suggest that Hb allostery in erythrocytes serves as an O2-sensing trigger that drives glycolytic acceleration to stabilize intracellular energetics and promote the ability to release O2 from the cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Capillary Endothelial Fatty Acid Binding Proteins 4 and 5 Play a Critical Role in Fatty Acid Uptake in Heart and Skeletal Muscle

Tatsuya Iso; Kazuhisa Maeda; Hirofumi Hanaoka; Toshihiro Suga; Kosaku Goto; Mas Rizky A. A. Syamsunarno; Takako Hishiki; Yoshiko Nagahata; Hiroki Matsui; Masashi Arai; Aiko Yamaguchi; Nada A. Abumrad; Motoaki Sano; Makoto Suematsu; Keigo Endo; Gökhan S. Hotamisligil; Masahiko Kurabayashi

Objective—Fatty acids (FAs) are the major substrate for energy production in the heart. Here, we hypothesize that capillary endothelial fatty acid binding protein 4 (FABP4) and FABP5 play an important role in providing sufficient FAs to the myocardium. Approach and Results—Both FABP4/5 were abundantly expressed in capillary endothelium in the heart and skeletal muscle. The uptake of a FA analogue, 125I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid, was significantly reduced in these tissues in double-knockout (DKO) mice for FABP4/5 compared with wild-type mice. In contrast, the uptake of a glucose analogue, 18F-fluorodeoxyglucose, was remarkably increased in DKO mice. The expression of transcripts for the oxidative catabolism of FAs was reduced during fasting, whereas transcripts for the glycolytic pathway were not altered in DKO hearts. Notably, metabolome analysis revealed that phosphocreatine and ADP levels were significantly lower in DKO hearts, whereas ATP content was kept at a normal level. The protein expression levels of the glucose transporter Glut4 and the phosphorylated form of phosphofructokinase-2 were increased in DKO hearts, whereas the phosphorylation of insulin receptor-&bgr; and Akt was comparable between wild-type and DKO hearts during fasting, suggesting that a dramatic increase in glucose usage during fasting is insulin independent and is at least partly attributed to the post-transcriptional and allosteric regulation of key proteins that regulate glucose uptake and glycolysis. Conclusions—Capillary endothelial FABP4/5 are required for FA transport into FA-consuming tissues that include the heart. These findings identify FABP4/5 as promising targets for controlling the metabolism of energy substrates in FA-consuming organs that have muscle-type continuous capillary.

Collaboration


Dive into the Takako Hishiki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge