Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mizuho A. Kido is active.

Publication


Featured researches published by Mizuho A. Kido.


Cell | 1998

Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein

Shigenori Nonaka; Yosuke Tanaka; Yasushi Okada; Sen Takeda; Akihiro Harada; Yoshimitsu Kanai; Mizuho A. Kido; Nobutaka Hirokawa

Abstract Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left–right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left–right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left–right axis in the node.


Neuroscience Research | 2010

Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

Toshio Munesue; Shigeru Yokoyama; Kazuhiko Nakamura; Ayyappan Anitha; Kazuo Yamada; Kenshi Hayashi; Tomoya Asaka; Hong-Xiang Liu; Duo Jin; Keita Koizumi; Mohammad Saharul Islam; Jian Jun Huang; Wen Jie Ma; Uh Hyun Kim; Sun Jun Kim; Keunwan Park; Dongsup Kim; Mitsuru Kikuchi; Yasuki Ono; Hideo Nakatani; Shiro Suda; Taishi Miyachi; Hirokazu Hirai; Alla B. Salmina; Yu A. Pichugina; Andrei A. Soumarokov; Nori Takei; Norio Mori; Masatsugu Tsujii; Toshiro Sugiyama

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


PLOS ONE | 2009

Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease

Kyota Fujita; Toshihiro Seike; Noriko Yutsudo; Mizuki Ohno; Hidetaka Yamada; Hiroo Yamaguchi; Kunihiko Sakumi; Yukiko Yamakawa; Mizuho A. Kido; Atsushi Takaki; Toshihiko Katafuchi; Yoshinori Tanaka; Yusaku Nakabeppu; Mami Noda

It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinsons disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.


Cell and Tissue Research | 1998

Light- and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone

Tetsuya Goto; Takayoshi Yamaza; Mizuho A. Kido; Teruo Tanaka

Abstract Substance P (SP) is a neuropeptide that is released from axons of sensory neurons and causes signal transduction through the activation of the neurokinin-1 receptor (NK1-R). The present study demonstrates the distribution of SP-like-immunoreactive (SP-LI) axons and the localization of NK1-Rs in rat bone tissue using the avidin-biotin-peroxidase complex method. Axons with SP-LI were commonly found near the trabecular bone in the temporal bone marrow, but they were only sparsely distributed in the mandible, femur, and tibia. Immunoreactivity for NK1-Rs was found on the plasma membrane and in the cytoplasm of the osteoclasts. In the osteoblasts and osteocytes, a small number of weak, punctate immunoreactive products of NK1-Rs were distributed close to the plasma membrane. At the electron-microscopic level, immunoreactivity for NK1-R was distributed mainly in the whole cytoplasm, except for the clear zone of the osteoclasts, and in pit-like structures along the plasma membrane. The NK1-R-immunoreactive structures in the cytoplasm were divided into two types of organelles, consisting of vesicular and vacuolar structures (probably transport vesicles and early endosomes). In the osteoblasts and osteocytes, the number of NK1-R-positive vesicular structures was fewer than in the osteoclasts. These results thus suggest that SP secreted by the sensory axons could directly modulate bone metabolism via NK1-Rs.


Journal of Dental Research | 1993

Distribution of substance P and calcitonin gene-related peptide-like immunoreactive nerve fibers in the rat temporomandibular joint

Mizuho A. Kido; Tamotsu Kiyoshima; T. Kondo; N. Ayasaka; Ryoji Moroi; Yoshihiro Terada; Teruo Tanaka

The density and distribution of substance P-like immunoreactive (SP-LI) and calcitonin gene-related peptide-like immunoreactive (CGRP-LI) nerve fibers in rat temperomandibular joint (TMJ) were investigated in whole-mount preparations and frozen sections by immunohistochemistry with the avidin-biotin-peroxidase complex method. Both types of immunoreactive nerves were observed primarily in the joint capsule, the peripheral articular disc, the synovial membrane, and the periosteum. The distribution of CGRP-LI nerves was similar to that of SP-LI nerves. The anterior portion of the joint capsule and disc was most densely innervated, followed by the posterior, lateral, and medial portions. In addition, CGRP-LI nerves were more numerous and more dense in immunointensity than SP-LI nerves. In the synovial membrane, many SP- and CGRP-LI nerves terminated in the subsynovial layer, but some branches extended into the superficial synovial lining layer close to the joint cavity. Immunolabeled nerves were prominently located in the disc attachment and peripheral portion of the disc, and occasional nerves were located in the dense collagenous disc band as an actual disc. However, no fibers were detected in the central disc band. Thus, most of the disc was not innervated by any nerves. The present study provides a morphological basis for the possible roles of neuropeptides in endocytosis by synoviocytes, regulation of blood flow in the synovial membrane, nociception mechanisms of the TMJ, and modulation of the inflammatory response in the TMJ.


Journal of Dental Research | 2003

Vanilloid Receptor Expression in the Rat Tongue and Palate

Mizuho A. Kido; Harue Muroya; Takayoshi Yamaza; Yoshihiro Terada; Teruo Tanaka

Capsaicin, the pungent substance in hot peppers, evokes a sensation of burning pain by stimulating the vanilloid receptor 1 (VR1) on primary afferent neurons. Immunohistochemistry revealed that the taste papillae in the tongue and palate are richly innervated by VR1-immunoreactive nerve fibers. Furthermore, VR1 protein expression was seen in the epithelium facing the oral cavity, although taste cells seemed to be devoid of VR1. The most conspicuous VR1 expression was observed in the epithelial cells of the palatal rugae, although there were no VR1-immunoreactive nerves there. The finding that VR1 is expressed not only in primary afferents but also in oral epithelial cells suggests that it is of great importance in the perception of capsaicin, heat, and acid in the mouth. Since VR1 is known to play a key role in nociception and inflammatory pain, it may be a new target for the treatment of oral pain.


Journal of Dental Research | 1995

A Topographical and Ultrastructural Study of Sensory Trigeminal Nerve Endings in the Rat Temporomandibular Joint as Demonstrated by Anterograde Transport of Wheat Germ Agglutinin-Horseradish Peroxidase (WGA-HRP)

Mizuho A. Kido; Tamotsu Kiyoshima; T. Ibuki; Seiji Shimizu; T. Kondo; Yoshihiro Terada; Teruo Tanaka

To extend our previous light microscopic observations concerning the distribution of trigeminal sensory nerves in the synovium of the rat temporomandibular joint, we investigated the detailed distribution and fine structure of sensory nerve endings at the light and electron microscopic level by the anterograde transport method using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected into the trigeminal ganglion. At the light microscopic level, HRP-labeled nerve fibers were observed in the joint capsule and peripheral portion of the disc. The anterior portion of the disc was more densely innervated than the posterior portion, while no nerves were found in the central portion. At the electron microscopic level, HRP reaction products were observed intra-axonally in the thinly myelinated (AS) and unmyelinated (C) axons in the anterior portion of the joint capsule, and were also localized in the extracellular space surrounding the unmyelinated fibers and terminals. In the subsynovial layer of the synovial membrane, the majority of labeled axons located near blood vessels or among the collagenous fibrils were covered by Schwann cell sheaths, although some naked axon terminals without sheaths were also found. These unsheathed terminals contained mitochondria, small clear vesicles, and large granular vesicles, and were close to the synovial A and/or B cells near the joint cavity. The minimum distance between the terminals and synovial cells was 75 nm. This is the first demonstration of trigeminal sensory nerve terminals close to synovial lining cells or joint cavity and suggests that neuropeptides such as substance P may be released close to the synovial lining cells or joint cavity.


Medical Molecular Morphology | 2001

Substance P and substance P receptors in bone and gingival tissues

Tetsuya Goto; Mizuho A. Kido; Takayoshi Yamaza; Teruo Tanaka

Substance P (SP) is an important member of the tachykinin family of neuropeptides, which work as neurotransmitters or neuromodulators. Recent advances in the analysis of SP receptors, particularly the neurokinin-1 receptors (NK1-Rs) that have high affinity for SP, have demonstrated that they are distributed not only in the cells of the neuronal or immune systems but also in peripheral cells. Therefore, the effect of SP and its cellular receptors is not limited to the nervous or immune systems, but is more extensive than previously appreciated. SP-like immunoreactive (SP-LI) axons have been localized in both bone and gingival tissue, and SP receptors are widely distributed in osteoclasts, osteoblasts, and junctional epithelial cells, as well as in neutrophils and endothelial cells. The distribution of SP-LI axons and SP receptors suggests that SP may directly modulate bone metabolism and gingival tissue functions through SP receptors.


Journal of Dental Research | 1996

AN ULTRASTRUCTURAL STUDY OF THE RELATIONSHIP BETWEEN SENSORY TRIGEMINAL NERVES AND ODONTOBLASTS IN RAT DENTIN/PULP AS DEMONSTRATED BY THE ANTEROGRADE TRANSPORT OF WHEAT GERM AGGLUTININ-HORSERADISH PEROXIDASE (WGA-HRP)

T. Ibuki; Mizuho A. Kido; Tamotsu Kiyoshima; Yoshihiro Terada; Teruo Tanaka

Because the ultrastructure of the trigeminal sensory nerves in dentin, especially in relation to odontoblasts, remains to be clarified, we investigated the relationship between the trigeminal sensory nerves and the odontoblast processes using the anterograde axonal transport technique by injecting wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the rat trigeminal ganglion. Light microscopically, the nerves labeled with WGA-HRP were mainly concentrated at the pulpal horn, forming a nerve plexus at the subodontoblastic region and penetrating the predentin/dentin about 50 to 70 μm. Ultrastructurally, HRP reaction products were observed intraaxonally in the myelinated (Aδ) and unmyelinated (C) axons in the subodontoblastic region. Most nerves lost the Schwann sheath and were naked in the predentin/dentin. The labeled varicosities were close to the odontoblast processes in the dentinal tubules. No synaptic structures could be detected between the varicosities and the odontoblasts, but a gap about 20 nm wide was found between them. One type of varicosity was a rich mitochondria-containing varicosity, while the other was a rich vesicle-containing (large dense core vesicles and small clear vesicles) one. The reaction products were also found in the extracellular spaces surrounding the axons. Sometimes the reaction products were seen in the coated pits or the endocytotic vesicles of the odontoblast processes. The present study demonstrated that nerve endings (varicosities) derived from the trigeminal ganglion were present in the dentinal tubules, and that WGA-HRP extracellularly extruded from the sensory nerves in the odontoblastic layer or predentin/dentin. These findings thus suggest that sensory nerves may have some (e.g., trophic) effect on either odontoblasts or the environment around the sensory nerves in the dentin/pulp.


American Journal of Physiology-cell Physiology | 2008

Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts.

Fujio Okamoto; Hiroshi Kajiya; Kazuko Toh; Shinichi Uchida; Momono Yoshikawa; Sei Sasaki; Mizuho A. Kido; Teruo Tanaka; Koji Okabe

ClC-7 Cl(-) channels expressed in osteoclasts are important for bone resorption since it has been shown that disruption of the ClCN7 gene in mice leads to severe osteopetrosis. We have previously reported that Cl(-) currents recorded from mouse osteoclasts resemble those of ClC-3 Cl(-) channels. The aim of the present study was to determine the expression of ClC-3 channels in mouse osteoclasts and their functional role during bone resorption. We detected transcripts for both ClC-7 and ClC-3 channels in mouse osteoclasts by RT-PCR. The expression of ClC-3 was confirmed by immunocytochemical staining. Mouse osteoclasts lacking ClC-3 Cl(-) channels (ClC-3(-/-) osteoclasts) derived from ClCN3 gene-deficient mice (ClC-3(-/-)) showed lower bone resorption activity compared with ClC-3+/+ osteoclasts derived from wild-type mice (ClC-3+/+). Treatment of ClC-3+/+ osteoclasts with small interfering RNA (siRNA) against ClC-3 also significantly reduced bone resorption activity. Electrophysiological properties of basal and hypotonicity-induced Cl(-) currents in ClC-3(-/-) osteoclasts did not differ significantly from those in ClC-3+/+ osteoclasts. Using immunocytochemistry, ClC-3 was colocalized with lysosome-associated membrane protein 2. Using pH-sensitive dyes, organelle acidification activity in ClC-3(-/-) osteoclasts was weaker than in ClC-3+/+ osteoclasts. Treatment of ClC-3+/+ osteoclasts with siRNA against ClC-3 also reduced the organelle acidification activity. In conclusion, ClC-3 Cl(-) channels are expressed in intracellular organelles of mouse osteoclasts and contribute to osteoclastic bone resorption in vitro through organelle acidification.

Collaboration


Dive into the Mizuho A. Kido's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge