Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed Rafiq H. Siddiqui is active.

Publication


Featured researches published by Mohammed Rafiq H. Siddiqui.


International Journal of Nanomedicine | 2013

Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

Mujeeb Khan; Merajuddin Khan; Syed Farooq Adil; Muhammad Nawaz Tahir; Wolfgang Tremel; Hamad Z. Alkhathlan; Abdulrahman Al-Warthan; Mohammed Rafiq H. Siddiqui

The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.


Nanoscale Research Letters | 2015

Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract

Mujeeb Khan; Abdulhadi H. Al-Marri; Merajuddin Khan; Mohammed Rafi Shaik; Nils Mohri; Syed Farooq Adil; Mufsir Kuniyil; Hamad Z. Alkhathlan; Abdulrahman Al-Warthan; Wolfgang Tremel; Muhammad Nawaz Tahir; Mohammed Rafiq H. Siddiqui

Recently, green reduction of graphene oxide (GRO) using various natural materials, including plant extracts, has drawn significant attention among the scientific community. These methods are sustainable, low cost, and are more environmentally friendly than other standard methods of reduction. Herein, we report a facile and eco-friendly method for the bioreduction of GRO using Salvadora persica L. (S. persica L.) roots (miswak) extract as a bioreductant. The as-prepared highly reduced graphene oxide (SP-HRG) was characterized using powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron (XPS) spectroscopy, and transmission electron microscopy (TEM). Various results have confirmed that the biomolecules present in the root extract of miswak not only act as a bioreductant but also functionalize the surface of SP-HRG by acting as a capping ligand to stabilize it in water and other solvents. The dispersion quality of SP-HRG in deionized water was investigated in detail by preparing different samples of SP-HRG with increasing concentration of root extract. Furthermore, the dispersibility of SP-HRG was also compared with chemically reduced graphene oxide (CRG). The developed eco-friendly method for the reduction of GRO could provide a better substitute for a large-scale production of dispersant-free graphene and graphene-based materials for various applications in both technological and biological fields such as electronics, nanomedicine, and bionic materials.


International Journal of Molecular Sciences | 2015

Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites.

Abdulhadi H. Al-Marri; Mujeeb Khan; Merajuddin Khan; Syed Farooq Adil; Abdulrahman Al-Warthan; Hamad Z. Alkhathlan; Wolfgang Tremel; Joselito P. Labis; Mohammed Rafiq H. Siddiqui; Muhammad Nawaz Tahir

A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene.


International Journal of Nanomedicine | 2014

Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant.

Mujeeb Khan; Shams Tabrez Khan; Merajuddin Khan; Syed Farooq Adil; Javed Musarrat; Abdulaziz A. Al-Khedhairy; Abdulrahman Al-Warthan; Mohammed Rafiq H. Siddiqui; Hamad Z. Alkhathlan

The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms.


Materials Research-ibero-american Journal of Materials | 2012

Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium

Mohammed Rafiq H. Siddiqui; Abdulaziz I. Al-Wassil; Abdullah Mohmmed Al-Otaibi; R. M. Mahfouz

Pure zirconium oxide (ZrO2) nanoparticles with diameters 10-25 nm were synthesized from ZrOCl2.8H2O and Zr(SO4)2.H2O with benzyl alcohol as non-aqueous solvent medium using sol-gel method. Sodium lauryl sulfate was added as surfactants to control the particle size. The synthesized ZrO2 nanoparticles have a mixture of tetragonal and monoclinic structure. The XRD showed the purity of obtained ZrO2 nanoparticles with tetragonal and monoclinic phase and the crystallite size for ZrOCl2.8H2O precursor was estimated to be 18.1 nm and that from Zr(SO4)2.H2O was 9.7 nm. The transmission electron microscopy and scanning electron microscopic studies also shows different sizes of nanoparticles and different morphology depending on the precursor used for the synthesis of ZrO2 nanoparticles


Chemistry Central Journal | 2014

Tandem Aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to dimedone-barbituric acid derivatives

Assem Barakat; Abdullah Mohammed Al-Majid; Abdulaziz Alghamdi; Yahia N. Mabkhot; Mohammed Rafiq H. Siddiqui; Hazem A. Ghabbour; Hoong-Kun Fun

BackgroundGreen chemistry is a rapidly developing new field that provides us with a proactive avenue for the sustainable development of future science and technologies. Green chemistry uses highly efficient and environmentally benign synthetic protocols to deliver lifesaving medicines, accelerating lead optimization processes in drug discovery, with reduced unnecessary environmental impact. From this view point, it is desirable to use water instead of organic solvents as a reaction medium, since water is safe, abundant and an environmentally benign solvent.ResultsA convenient one-pot method for the efficient synthesis of the novel Zwitterion derivatives 4a-pvia a three-component condensation reaction of barbituric acid derivatives 1a,b, dimedone 2, and various aldehydes 3 in the presence of aqueous diethylamine media is described. This new approach is environmentally benign, with clean synthetic procedure, short reaction times and easy work-up procedure which proceeded smoothly to provide excellent yield (88-98%). The synthesized products were characterized by elemental analysis, IR, MS, NMR and CHN analysis. The structure of 4a was further confirmed by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pbca with α = 14.6669 (5) Å, b = 18.3084 (6) Å, c = 19.0294 (6) Å, α = 90°, β = 90°, = 90°, V = 5109.9 (3) Å3, and Z = 8. The molecules are packed in crystal structure by weak intermolecular C–H⋅ ⋅ ⋅O hydrogen bonding interactions.ConclusionsAn environmentally benign Aldol-Michael protocol for the synthesis of dimedone-barbituric derivatives using aqueous diethylamine medium is achieved.


Nanoscale Research Letters | 2015

Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols

Syed Farooq Adil; Saad Alabbad; Mufsir Kuniyil; Mujeeb Khan; Abdulrahman Al-Warthan; Nils Mohri; Wolfgang Tremel; Muhammad Nawaz Tahir; Mohammed Rafiq H. Siddiqui

Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.


International Journal of Nanomedicine | 2016

Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

Merajuddin Khan; Mujeeb Khan; Abdulhadi H. Al-Marri; Abdulrahman Al-Warthan; Hamad Z. Alkhathlan; Mohammed Rafiq H. Siddiqui; Vadithe Lakshma Nayak; Ahmed Kamal; Syed Farooq Adil

Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.


Molecules | 2017

Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity

Mohammed Rafi Shaik; Zuhur Ali; Mujeeb Khan; Mufsir Kuniyil; Mohamed E. Assal; Hamad Z. Alkhathlan; Abdulrahman Al-Warthan; Mohammed Rafiq H. Siddiqui; Merajuddin Khan; Syed Farooq Adil

The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2016

One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives

Ayman El-Faham; Saied M. Soliman; Sameh M. Osman; Hazem A. Ghabbour; Mohammed Rafiq H. Siddiqui; Hoong-Kun Fun; Fernando Albericio

Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f=0.1389), 204.2 nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.

Collaboration


Dive into the Mohammed Rafiq H. Siddiqui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammad Nawaz Tahir

King Fahd University of Petroleum and Minerals

View shared research outputs
Researchain Logo
Decentralizing Knowledge