Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mujeeb Khan is active.

Publication


Featured researches published by Mujeeb Khan.


Journal of Materials Chemistry | 2015

Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

Mujeeb Khan; Muhammad Nawaz Tahir; Syed Farooq Adil; Hadayat Ullah Khan; M. Rafiq H. Siddiqui; Abdulrahman Al-Warthan; Wolfgang Tremel

Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials has increased exponentially. Particularly the development of easy preparation methods for graphene like materials, such as highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail the aspects of graphene-based inorganic nanocomposites.


International Journal of Nanomedicine | 2013

Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

Mujeeb Khan; Merajuddin Khan; Syed Farooq Adil; Muhammad Nawaz Tahir; Wolfgang Tremel; Hamad Z. Alkhathlan; Abdulrahman Al-Warthan; Mohammed Rafiq H. Siddiqui

The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.


Journal of the American Chemical Society | 2008

Transient States in [2 + 2] Photodimerization of Cinnamic Acid: Correlation of Solid-State NMR and X-ray Analysis

Mujeeb Khan; Gunther Brunklaus; Volker Enkelmann; H. W. Spiess

13C-CPMAS and other solid-state NMR methods have been applied to monitor the solid-state reactions of trans-cinnamic acid derivatives, which are the pioneer and model compounds in the field of topochemistry previously studied by X-ray diffraction, AFM, and vibrational spectroscopy. Single-crystal X-ray analyses of photoirradiated alpha-trans-cinnamic acid where the monomers are arranged in a head-to-tail manner have revealed the formation of a centrosymmetric alpha-truxillic acid photodimer. For a centrosymmetric dimer, however, two cyclobutane carbon signals and one carbonyl carbon signal were expected apart from other aromatic carbon signals. Instead, four cyclobutane and two carbonyl carbon signals were observed suggesting the formation of a non-centrosymmetric photodimer. Removing hydrogen bonds from the system by esterfication of alpha-truxillic acid yield a centrosymmetric photodimer. Careful analysis of the obtained products via solid-state NMR clearly showed that the observed peak splittings in the 13C-CPMAS spectra did not originate from packing effects but rather result from asymmetric hydrogen bonds distorting the local symmetry. Further evidence of this rather dynamic hydrogen-bonding stems from high-temperature X-ray data revealing that only the joint approach of both X-ray analysis and solid-state NMR at similar temperatures allows for the successful characterization of dynamic processes occurring in topochemical reactions, thus, providing detailed insight into the reaction mechanism of organic solid-state transformations.


Nanoscale Research Letters | 2015

Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract

Mujeeb Khan; Abdulhadi H. Al-Marri; Merajuddin Khan; Mohammed Rafi Shaik; Nils Mohri; Syed Farooq Adil; Mufsir Kuniyil; Hamad Z. Alkhathlan; Abdulrahman Al-Warthan; Wolfgang Tremel; Muhammad Nawaz Tahir; Mohammed Rafiq H. Siddiqui

Recently, green reduction of graphene oxide (GRO) using various natural materials, including plant extracts, has drawn significant attention among the scientific community. These methods are sustainable, low cost, and are more environmentally friendly than other standard methods of reduction. Herein, we report a facile and eco-friendly method for the bioreduction of GRO using Salvadora persica L. (S. persica L.) roots (miswak) extract as a bioreductant. The as-prepared highly reduced graphene oxide (SP-HRG) was characterized using powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron (XPS) spectroscopy, and transmission electron microscopy (TEM). Various results have confirmed that the biomolecules present in the root extract of miswak not only act as a bioreductant but also functionalize the surface of SP-HRG by acting as a capping ligand to stabilize it in water and other solvents. The dispersion quality of SP-HRG in deionized water was investigated in detail by preparing different samples of SP-HRG with increasing concentration of root extract. Furthermore, the dispersibility of SP-HRG was also compared with chemically reduced graphene oxide (CRG). The developed eco-friendly method for the reduction of GRO could provide a better substitute for a large-scale production of dispersant-free graphene and graphene-based materials for various applications in both technological and biological fields such as electronics, nanomedicine, and bionic materials.


International Journal of Molecular Sciences | 2015

Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites.

Abdulhadi H. Al-Marri; Mujeeb Khan; Merajuddin Khan; Syed Farooq Adil; Abdulrahman Al-Warthan; Hamad Z. Alkhathlan; Wolfgang Tremel; Joselito P. Labis; Mohammed Rafiq H. Siddiqui; Muhammad Nawaz Tahir

A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene.


International Journal of Nanomedicine | 2014

Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant.

Mujeeb Khan; Shams Tabrez Khan; Merajuddin Khan; Syed Farooq Adil; Javed Musarrat; Abdulaziz A. Al-Khedhairy; Abdulrahman Al-Warthan; Mohammed Rafiq H. Siddiqui; Hamad Z. Alkhathlan

The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms.


Journal of Organic Chemistry | 2009

Solid-state NMR and X-ray analysis of structural transformations in O-H...N heterosynthons formed by hydrogen-bond-mediated molecular recognition.

Mujeeb Khan; Volker Enkelmann; Gunther Brunklaus

The template-mediated, hydrogen-bond-driven co-crystallization of trans-1,2-bis(4-pyridyl)ethylene (bpe) and resorcinol together with 1,2-bis(4-pyridyl)ethane (bpet) yielded two new polymorphs of 2(bpe):2(res) and 2(bpet):2(res) molecular adducts, thereby exploiting the molecular specificity of resorcinol-pyridine O-H...N recognition in the presence of multiple dipyridines. Comprehensive understanding of the subsequent [2 + 2] photodimerization of the known polymorph of 2(bpe):2(res) complex was obtained by applying single-crystal X-ray analysis and (13)C CPMAS solid-state NMR at different levels of conversion, ranging from monomer to the dimer. In addition, removal of the resorcinol template from the 2(bpe):2(res) complex yields a distorted tetrakis(4-pyridyl)cyclobutane, revealing a rather different molecular geometry (orthorhombic, Pccn phase). Ambiguous peak splittings and the presence of unexpected resonances in the respective (13)C CPMAS NMR spectra have been successfully explained by the joint approach of X-ray analysis and density functional theory (DFT) chemical shift computations.


CrystEngComm | 2011

Heterosynthon mediated tailored synthesis of pharmaceutical complexes: a solid-state NMR approach

Mujeeb Khan; Volker Enkelmann; Gunther Brunklaus

Based on crystal engineering principles, we have explored the predictability of resulting structures of a multi-component pharmaceutical model complex derived from 4-hydroxybenzoic acid (4HBA) and quinidine, an anti-malarial constituent of Cinchona tree bark. Though the obtained complex is stabilized by a slightly different set of charge-assisted heterosynthons as proposed, the applied concept was efficient in predicting the salt formation. The salt 1 crystallizes in a monoclinic space group [P21 (no. 4), Z = 8, a = 6.914 A, b = 36.197 A, c = 9.476 A and β = 92.126], where the asymmetric unit is comprised of two quinidine and two 4HBA molecules. In addition, a micro-crystalline, less-defined sample of 1 was obtained from rapid co-crystallization in ethanol and successfully identified via both infrared spectroscopy and multinuclear solid-state NMR. The interpretation of the obtained NMR data was supported by DFT quantum-chemical computations while illustrating options of “NMR crystallography”.


Biotechnology & Biotechnological Equipment | 2016

Antifungal silver nanoparticles: synthesis, characterization and biological evaluation

Abdallah M. Elgorban; Abd El-Rahim M. A. El-Samawaty; Mohamed A. Yassin; Shaban R. M. Sayed; Syed Farooq Adil; Khaled Mohamed Elhindi; Marwa M. Bakri; Mujeeb Khan

ABSTRACT Silver nanoparticles have a high antimicrobial activity and are broadly utilized for several disinfection purposes including water and materials’ sanitization for medical purposes. There have been comparatively few studies on using silver against plant pathogenic fungi. In this study, silver nanoparticles (Ag NPs) were used at concentrations of 0.0, 0.0002, 0.0005, 0.0007, 0.0009, 0.0014 and 0.0019 mol/L. Six different Rhizoctonia solani anastomosis groups (AGs) infecting cotton plants were treated in vitro with Ag NPs on Czapek Dox agar (CDA) and potato dextrose agar plates. The results showed that various concentrations of Ag NPs have antifungal properties to control R. solani AGs. The obtained results also revealed that strong inhibition of R. solani AGs was noticed on CDA at all concentrations.


Nanoscale Research Letters | 2015

Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols

Syed Farooq Adil; Saad Alabbad; Mufsir Kuniyil; Mujeeb Khan; Abdulrahman Al-Warthan; Nils Mohri; Wolfgang Tremel; Muhammad Nawaz Tahir; Mohammed Rafiq H. Siddiqui

Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.

Collaboration


Dive into the Mujeeb Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammad Nawaz Tahir

King Fahd University of Petroleum and Minerals

View shared research outputs
Researchain Logo
Decentralizing Knowledge