Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohanad Zbidah is active.

Publication


Featured researches published by Mohanad Zbidah.


Cellular Physiology and Biochemistry | 2013

Patulin-induced suicidal erythrocyte death.

Adrian Lupescu; Kashif Jilani; Mohanad Zbidah; Florian Lang

Background: Patulin, the most common mycotoxin in apples and apple-derived products, triggers apoptosis and has thus been considered for the treatment of cancer. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i). The present study explored, whether exposure of human erythrocytes to patulin is followed by eryptosis. Methods: Forward scatter was measured to estimate cell volume, annexin V binding to detect phosphatidylserine-exposure, hemoglobin release to quantify hemolysis, and Fluo3-fuorescence to determine [Ca2+]i. Results: A 48 h exposure to patulin significantly increased [Ca2+]I (5 µM), significantly decreased forward scatter (5 µM) and significantly increased annexin-V-binding (2.5 µM). Patulin (10 µM) induced annexin-V-binding was virtually abrogated by removal of extracellular Ca2+. Conclusion: Patulin stimulates Ca2+ entry into erythrocytes, an effect triggering suicidal erythrocyte death or eryptosis.


Basic & Clinical Pharmacology & Toxicology | 2013

Stimulation of Suicidal Erythrocyte Death by Fumagillin

Mohanad Zbidah; Adrian Lupescu; Kashif Jilani; Florian Lang

Fumagillin, a cyclohexane isolated from fungus Aspergillus fumigatus, has anti‐infective and anti‐cancer potency. Fumagillin is at least partially effective by inducing suicidal death or apoptosis. In analogy to apoptosis of nucleated cells, eryptosis is the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Stimulators of eryptosis include increase of cytosolic Ca2+‐activity ([Ca2+]i) and ceramide. The present study explored whether fumagillin (5–100 μM) could stimulate eryptosis. To this end, [Ca2+]i was estimated from Fluo3 fluorescence, ceramide by utilizing specific antibodies, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding and haemolysis from haemoglobin release. As a result, a 48‐hr exposure to fumagillin significantly increased [Ca2+]i (≥10 μM), enhanced ceramide abundance (100 μM), triggered annexin V binding (≥10 μM) and decreased forward scatter (≥10 μM). Fumagillin exposure was followed by slight but significant increase of haemolysis. Removal of extracellular Ca2+ significantly blunted but did not abolish the effect of fumagillin (100 μM) on annexin V binding. The present observations disclose a novel effect of fumagillin, that is, stimulation of eryptosis, paralleled by Ca2+ entry, ceramide formation, phosphatidylserine exposure and decrease of cell volume.


Cellular Physiology and Biochemistry | 2012

Inhibition of Ca2+ Entry and Suicidal Erythrocyte Death by Naringin

Nazneen Shaik; Mohanad Zbidah; Florian Lang

Naringin is a dietary flavonoid from citrus fruits with antioxidant and antiapoptotic activity. Similar to apoptosis of nucleated cells, suicidal death of erythrocytes or eryptosis is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptosis is triggered by increased cytosolic Ca2+ activity, e.g. following energy depletion or oxidative stress. The present study thus explored whether naringin interferes with eryptosis. To this end, the cytosolic Ca2+ concentration was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin-V-binding and cell volume from forward scatter in FACS analysis. As a result, energy depletion (48 h glucose removal) and oxidative stress (30 min exposure to 0.3 mM tert-butylhydroperoxide) increased Fluo-3 fluorescence, decreased the erythrocyte forward scatter and enhanced the percentage of annexin-V-binding erythrocytes. Naringin (up to 40 µM) did not significantly modify Fluo-3 fluorescence, erythrocyte forward scatter or annexin-V-binding in the presence of glucose and absence of oxidative stress. Naringin, however, significantly blunted the effect of glucose depletion and oxidative stress on Fluo-3 fluorescence, erythrocyte forward scatter or annexin-V-binding. In conclusion, naringin blunts the increase of cytosolic Ca2+ concentration, the shrinkage, the cell membrane scrambling and thus the suicidal death of erythrocytes following energy depletion or oxidative stress.


Kidney & Blood Pressure Research | 2012

Enhanced Apoptotic Death of Erythrocytes Induced by the Mycotoxin Ochratoxin A

Kashif Jilani; Adrian Lupescu; Mohanad Zbidah; Majed Abed; Nazneen Shaik; Florian Lang

Background: The mycotoxin ochratoxin A, an agent responsible for endemic Balkan nephropathy is known to trigger apoptosis and thus being toxic to several organs including the kidney. The mechanisms involved in ochratoxin A induced apoptosis include oxidative stress. Sequelae of ochratoxin intoxication include anemia. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling resulting in phosphatidylserine-exposure at the cell surface. Eryptosis could be triggered by Ca2+-entry through oxidant sensitive unspecificcation channels increasing cytosolic Ca2+ activity ([Ca2+]i). The Ca2+-sensitivity of cell membrane scrambling could be enhanced and eryptosis thus triggered by ceramide. The removal of suicidal erythrocytes may lead to anemia. Moreover, eryptotic erythrocytes could adhere to the vascular wall thus impeding microcirculation. The present study explored, whether ochratoxin A stimulates eryptosis. Methods: Fluo3-fluorescence was utilized to determine [Ca2+]i, forward scatter to estimate cell volume, annexin-V-binding to identify phosphatidylserine-exposing cells, fluorescent antibodies to detect ceramide formation and hemoglobin release to quantify hemolysis. Moreover, adhesion to human vascular endothelial cells (HUVEC) was determined utilizing a flow chamber. Results: A 48 h exposure to ochratoxin A was followed by significant increase of Fluo3-fluorescencei (≥ 2.5 µM), increase of ceramide abundance (10 µM), decrease of forward scatter (≥ 5 µM) and increase of annexin-V-binding (≥ 2.5 µM). Ochratoxin A exposure slightly but significantly enhanced hemolysis (10 µM). Ochratoxin (10 µM) enhanced erythrocyte adhesion to HUVEC. Removal of extracellular Ca2+ significantly blunted, but did not abrogate ochratoxin A-induced annexin V binding. Conclusions: Ochratoxin A triggers suicidal erythrocyte death or eryptosis, an effect partially but not fully due to stimulation of Ca2+-entry.


Cellular Physiology and Biochemistry | 2012

Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study.

Syed M. Qadri; Florian Lang; Adrian Lupescu; Nazneen Shaik; Kashif Jilani; Christine Zelenak; Elisabeth Lang; Venkanna Pasham; Mohanad Zbidah; Michael Bitzer

Background: Sorafenib (Nexavar®), a polytyrosine kinase inhibitor, stimulates apoptosis and is thus widely used for chemotherapy in hepatocellular carcinoma (HCC). Hematological side effects of Nexavar® chemotherapy include anemia. Erythrocytes may undergo apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and phosphatidylserine-exposure at the cell surface. Signaling leading to eryptosis include increase in cytosolic Ca2+activity ([Ca2+]i), formation of ceramide, ATP-depletion and oxidative stress. The present study explored, whether sorafenib triggers eryptosis in vitro and in vivo. Methods: [Ca2+]i was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, ceramide with antibody binding-dependent fluorescence, cytosolic ATP with a luciferin–luciferase-based assay, and oxidative stress from 2’,7’ dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 48 h exposure of erythrocytes to sorafenib (≥0.5 µM) significantly increased Fluo 3 fluorescence, decreased forward scatter, increased annexin-V-binding and triggered slight hemolysis (≥5 µM), but did not significantly modify ceramide abundance and cytosolic ATP. Sorafenib treatment significantly enhanced DCFDA-fluorescence and the reducing agents N-acetyl-L-cysteine and tiron significantly blunted sorafenib-induced phosphatidylserine exposure. Nexavar® chemotherapy in HCC patients significantly enhanced the number of phosphatidylserine-exposing erythrocytes. Conclusions: The present observations disclose novel effects of sorafenib, i.e. stimulation of suicidal erythrocyte death or eryptosis, which may contribute to the pathogenesis of anemia in Nexavar®-based chemotherapy.


Toxicology | 2012

Induction of apoptotic erythrocyte death by rotenone

Adrian Lupescu; Kashif Jilani; Mohanad Zbidah; Florian Lang

The pesticide rotenone stimulates apoptosis and rotenone intoxication has been considered a cause of Parkinsons disease. Rotenone further sensitizes tumor cells to cytotoxic drugs. The apoptotic effect of rotenone is at least partially due to mitochondrial injury. Even though lacking mitochondria and nuclei, erythrocytes may undergo eryptosis, an apoptosis-like suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)) and enhanced ceramide formation. The present study explored, whether rotenone elicits eryptosis. To this end, [Ca(2+)](i) was estimated utilizing Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, ceramide utilizing fluorescence antibodies and hemolysis from hemoglobin release. A 48 h exposure to rotenone significantly increased Fluo3-fluorescence(i) (≥1 μM), increased ceramide abundance (10 μM), decreased forward scatter (≥2.5 μM) and increased annexin-V-binding (≥ 1 μM). Rotenone exposure was further followed by slight but significant hemolysis. Rotenone-induced cell membrane scrambling was significantly blunted, but not completely abrogated by removal of extracellular Ca(2+). The present observations disclose a novel effect of rotenone, i.e. triggering of erythrocyte shrinkage and cell membrane scrambling, an effect paralleled by and partially dependent on Ca(2+)-entry.


Toxicology | 2012

Gossypol-induced suicidal erythrocyte death.

Mohanad Zbidah; Adrian Lupescu; Nazneen Shaik; Florian Lang

Side effects of gossypol, a polyphenolic component of Gossypium, with male contraceptive, anticancer, antimicrobial and antiviral activities include anemia due to accelerated demise of erythrocytes. Erythrocytes may be cleared from circulating blood following apoptosis-like suicidal death or eryptosis. Hallmarks of eryptosis are cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine-exposure at the cell surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)). The present study explored, whether gossypol stimulates eryptosis of human erythrocytes. Utilizing flow cytometry, [Ca(2+)](i) was estimated from Fluo-3 fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, and hemolysis from hemoglobin release. A 48 h exposure to gossypol (0.75 μM) significantly increased [Ca(2+)](i), decreased forward scatter and increased annexin-V-binding. Gossypol exposure was followed by a slight but significant increase of hemolysis. Removal of extracellular Ca(2+) significantly blunted the effect of gossypol (1 μM) on annexin-V-binding. The present observations reveal a novel effect of gossypol on human erythrocytes, which contributes to or even accounts for the triggering of anemia by this substance.


Toxicology in Vitro | 2013

Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes.

Kashif Jilani; Adrian Lupescu; Mohanad Zbidah; Nazneen Shaik; Florian Lang

Withaferin A, a triterpenoid component from Withania somnifera, counteracts malignancy, an effect attributed to stimulation of apoptosis. Withaferin A is partially effective through induction of oxidative stress, altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter apoptosis-like eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity [Ca(2+)](i) following activation of oxidant-sensitive Ca(2+)-permeable cation channels, ceramide formation and/or ATP-depletion. The present study explored, whether withaferin A triggers eryptosis. To this end, [Ca(2+)](i) was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, hemolysis from hemoglobin release, oxidative stress from DCFDA-fluorescence and ceramide abundance utilizing antibodies. A 48 h exposure to withaferin A significantly decreased forward scatter (at ≥ 10 μM withaferin concentration) and increased [Ca(2+)](i) (≥ 5 μM), ROS-formation (≥ 10 μM) ceramide-formation ( ≥ 10 μM) as well as annexin-V-binding ( ≥ 5 μM). Withaferin A treatment was followed by slight but significant increase of hemolysis. Extracellular Ca(2+) removal, amiloride, and the antioxidant N-acetyl-l-cysteine significantly blunted withaferin A-triggered annexin-V-binding. The present observations reveal that withaferin A triggers suicidal erythrocyte death despite the absence of gene expression and key elements of apoptosis such as mitochondria.


Journal of Natural Products | 2012

Enhanced Ca2+ entry, ceramide formation, and apoptotic death of erythrocytes triggered by plumbagin.

Adrian Lupescu; Kashif Jilani; Mohanad Zbidah; Elisabeth Lang; Florian Lang

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, 1), a natural product from plants with potential anticancer potency, induces apoptosis. Mechanisms involved in 1-induced apoptosis include mitochondrial depolarization, inactivation of NF-κB, and altered expression of anti- and proapoptotic Bcl proteins. Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which, like apoptosis, results in cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity ([Ca(2+)]i) and ceramide formation. The present study explored whether 1 stimulates eryptosis. Cell volume was estimated from forward scatter, phosphatidylserine exposure from annexin-V-binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo-3 fluorescence, and ceramide abundance utilizing antibodies. A 48 h exposure to 1 (2 μM) decreased forward scatter and increased annexin-V-binding significantly, events paralleled by increased [Ca(2+)]i and ceramide formation. Exposure to 1 was followed by a slight but significant increase of hemolysis. Removal of extracellular Ca(2+) slightly, but significantly blunted the effect of 1 (2 μM) on annexin-V-binding. The present observations demonstrate that 1 may trigger suicidal death of erythrocytes, cells devoid of mitochondria and nuclei.


Journal of Agricultural and Food Chemistry | 2012

Apigenin-Induced Suicidal Erythrocyte Death

Mohanad Zbidah; Adrian Lupescu; Kashif Jilani; Abul Fajol; Diana Michael; Syed M. Qadri; Florian Lang

Apigenin, a flavone in fruits and vegetables, stimulates apoptosis and thus counteracts cancerogenesis. Erythrocytes may similarly undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity ([Ca(2+)](i)), ceramide formation and ATP depletion. The present study explored the effect of apigenin on eryptosis. [Ca(2+)](i) was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding, hemolysis from hemoglobin release, ceramide utilizing antibodies, and cytosolic ATP with luciferin-luciferase. A 48 h exposure to apigenin significantly increased [Ca(2+)](i) (≥ 1 μM), increased ceramide formation (15 μM), decreased ATP concentration (15 μM), decreased forward scatter (≥ 1 μM), and increased annexin V binding (≥ 5 μM) but did not significantly modify hemolysis. The effect of 15 μM apigenin on annexin V binding was blunted by Ca(2+) removal. The present observations reveal novel effects of apigenin, i.e. stimulation of Ca(2+) entry, ceramide formation and ATP depletion in erythrocytes with subsequent triggering of suicidal erythrocyte death, paralleled by cell shrinkage and phosphatidylserine exposure.

Collaboration


Dive into the Mohanad Zbidah's collaboration.

Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenting Yang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Abul Fajol

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge