Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohd Asgher is active.

Publication


Featured researches published by Mohd Asgher.


Journal of Plant Physiology | 2015

Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat.

M. Iqbal R. Khan; Faroza Nazir; Mohd Asgher; Tasir S. Per; Nafees A. Khan

We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced oxidative stress by increasing proline accumulation as a result of increased activity of glutamyl kinase (GK) and decreased activity of proline oxidase (PROX). These nutrients also induced the activity of ATP-sulfurylase and serine acetyl transferase and the content of cysteine (Cys), a precursor for the synthesis of both reduced glutathione (GSH) and ethylene. Further, application of Se and S to plants under Cd stress reduced ethylene level and increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPX), reduced oxidative stress and improved photosynthesis and growth. The involvement of ethylene in Se and S-mediated alleviation of Cd stress was substantiated with the use of ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The use of AVG reversed the effects of Se and S on ethylene, content of proline and GSH and photosynthesis. The results suggested that Se and S both reversed Cd-induced oxidative stress by regulating ethylene formation, proline and GSH metabolism. Thus, Se or S-induced regulatory interaction between ethylene and proline and GSH metabolism may be used for the reversal of Cd-induced oxidative stress.


Plant Physiology and Biochemistry | 2014

Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.)

M. Iqbal R. Khan; Mohd Asgher; Nafees A. Khan

The influence of salicylic acid (SA) in alleviation of salt stress in mungbean (Vigna radiata L.) through modulation of glycinebetaine (GB) and ethylene was studied. SA application at 0.5 mM increased methionine (Met) and GB accumulation in plants concomitant with the suppression of ethylene formation by inhibiting 1-aminocyclopropane carboxylic acid synthase (ACS) activity more conspicuously under salt stress than no stress. The increased GB accumulation together with reduced ethylene under salt stress by SA application was associated with increased glutathione (GSH) content and lower oxidative stress. These positive effects on plant metabolism induced by SA application led to improved photosynthesis and growth under salt stress. These results suggest that SA induces GB accumulation through increased Met and suppresses ethylene formation under salt stress and enhances antioxidant system resulting in alleviation of adverse effects of salt stress on photosynthesis and growth. These effects of SA were substantiated by the findings that application of SA-analogue, 2, 6, dichloro-isonicotinic acid (INA) and ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) resulted in similar effects on Met, GB, ethylene production, photosynthesis and growth under salt stress. Future studies on the interaction between SA, GB and ethylene could be exploited for adaptive responses of plants under salt stress.


Protoplasma | 2015

Minimising toxicity of cadmium in plants—role of plant growth regulators

Mohd Asgher; M. Iqbal R. Khan; Naser A. Anjum; Nafees A. Khan

A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.


Ecotoxicology and Environmental Safety | 2014

Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.

Mohd Asgher; Nafees A. Khan; M. Iqbal R. Khan; Mehar Fatma; Asim Masood

We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO₄(2-), and the effect of 1.0 mM SO₄(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO₄(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.


Plant Physiology | 2015

Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress

Nguyen Phuong Thao; M. Iqbal R. Khan; Nguyen Binh Anh Thu; Xuan Lan Thi Hoang; Mohd Asgher; Nafees A. Khan; Lam-Son Phan Tran

Ethylene regulates plant responses to heavy metal stress through the interaction with other signaling molecules. Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.


Plant Signaling & Behavior | 2013

Cross-talk between sulfur assimilation and ethylene signaling in plants.

Noushina Iqbal; Asim Masood; M. Iqbal R. Khan; Mohd Asgher; Mehar Fatma; Nafees A. Khan

Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.


Journal of Plant Biochemistry & Physiology | 2014

Salinity Tolerance in Plants: Revisiting the Role of Sulfur Metabolites

Nafees A. Khan; M. Iqbal R. Khan; Mohd Asgher; Mehar Fatma; Asim Masood; Shabina Syeed

Salinity is becoming a major threat to plant productivity loss in agricultural system. Plants respond to saline environment by modulating the inherent mechanisms to adjust to the changing environment. The understanding of the mechanisms that plants operate under saline environment is essential beginning in efforts to reduce the adverse effects of salinity stress. The agricultural system is tightly linked with the fertilizer input and thus the judicious application of fertilizers is expected to lead positive effects in reversing the salinity effects. Sulfur is a macronutrient with essential roles in plant development under optimal and stressful environment. Several compounds are synthesized from sulfur metabolism useful in reversing the adverse effects of abiotic stress because of their free radicals scavenging property. Sulfur-containing metabolites, amino acids (cysteine and methionine), vitamins (biotin and thiamine), thioredoxin system, glutathione lipoic acid and glucosinolats have potential to promote or modify physiological and molecular processes under salinity stress in plants. Thus, modulation of sulfur metabolites production could alter physiological and molecular mechanisms to provide tolerance against salinity. The present review discusses the role of sulfur-containing compounds in modifying various physiological and molecular processes in plants to confer salinity tolerance in plants.


Environmental Science and Pollution Research | 2017

Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress

Mohd Asgher; Tasir S. Per; Asim Masood; Mehar Fatma; Luciano Freschi; Francisco J. Corpas; Nafees A. Khan

Nitric oxide (NO) is a free radical molecule involved in an array of functions under physiological and adverse environmental conditions. As other free radical molecules, NO biological action depends on its cellular concentration, acting as a signal molecule when produced at low concentration or resulting in cellular damage when produced at sufficiently high levels to trigger nitro-oxidative stress. Over the last decade, significant progress has been made in characterizing NO metabolism and action mechanism, revealing that diverse biosynthetic routes can generate this free radical in plants and its action mainly occurs through posttranslational modification (nitration and S-nitrosylation) of target proteins. Intricate crosstalk networks between NO and other signaling molecules have been described involving phytohormones, other second messengers, and key transcription factors. This review will focus on our current understanding of NO interplay with phytohormones and other plant growth regulators under abiotic stress conditions.


Frontiers in Plant Science | 2016

Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses through Increase in Use-Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard

Masudulla Khan; Nafees A. Khan; Asim Masood; Tasir S. Per; Mohd Asgher

The response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity to different concentrations of hydrogen peroxide (H2O2) or nickel (Ni) was evaluated. Further, the effect of H2O2 on photosynthetic responses of the mustard cultivars grown with or without Ni stress was studied. Application of 50 μM H2O2 increased photosynthesis and growth more prominently in high photosynthetic capacity cultivar (Varuna) than low photosynthetic capacity cultivar (RH30) grown without Ni stress. The H2O2 application also resulted in alleviation of photosynthetic inhibition induced by 200 mg Ni kg-1 soil through increased photosynthetic nitrogen-use efficiency (NUE), sulfur-use efficiency (SUE), and glutathione (GSH) reduced production together with decreased lipid peroxidation and electrolyte leakage in both the cultivars. However, the effect of H2O2 was more pronounced in Varuna than RH30. The greater increase in photosynthetic-NUE and SUE and GSH production with H2O2 in Varuna resulted from higher increase in activity of nitrogen (N) and sulfur (S) assimilation enzymes, nitrate reductase and ATP-sulfurylase, respectively resulting in enhanced N and S assimilation. The increased N and S content contributed to the higher activity of ribulose-1,5-bisphosphate carboxylase under Ni stress. Application of H2O2 also regulated PS II activity and stomatal movement under Ni stress for maintaining higher photosynthetic potential in Varuna. Thus, H2O2 may be considered as a potential signaling molecule for augmenting photosynthetic potential of mustard plants under optimal and Ni stress conditions. It alleviates Ni stress through the regulation of stomatal and non-stomotal limitations, and photosynthetic-NUE and -SUE and GSH production.


Frontiers in Plant Science | 2016

Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard

Nafees A. Khan; Mohd Asgher; Tasir S. Per; Asim Masood; Mehar Fatma; Masudulla Khan

The potential of exogenous ethylene and sulfur (S) in reversal of cadmium (Cd)-inhibited photosynthetic and growth responses in mustard (Brassica juncea L. cv. Pusa Jai Kisan) were studied. Plants grown with 50 μM Cd showed increased superoxide and H2O2 accumulation and lipid peroxidation together with increased activity of 1-aminocyclopropane carboxylic acid synthase (ACS) and ethylene production and inhibition of photosynthesis and growth. Application of 1 mM SO42- or 200 μL L-1 ethephon (ethylene source) influenced photosynthetic and growth performance equally in presence or absence of Cd. However, their combined application synergistically improved photosynthetic performance more in presence of Cd and reduced oxidative stress (lower superoxide and H2O2 accumulation) by decreasing ethylene and glucose sensitivity with the increase in cysteine and methionineand a non-proteinogenic thiol (reduced glutathione; GSH) contents. The central role of ethylene in potentiating S-mediated reversal of Cd-induced oxidative stress was evident with the use of ethylene action inhibitor, norbornadiene (NBD). The application of NBD resulted in decreased thiol production and photosynthetic responses. This suggests that ethylene promotes the effects of S in reversal of adverse effects of Cd, and thus, ethylene modulation may be considered as potential tool to substantiate the S effects in reversal of Cd inhibited photosynthesis and growth in mustard.

Collaboration


Dive into the Mohd Asgher's collaboration.

Top Co-Authors

Avatar

Nafees A. Khan

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asim Masood

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Mehar Fatma

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Tasir S. Per

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Masudulla Khan

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Noushina Iqbal

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Bilqees Bano

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Faisal Rasheed

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Faroza Nazir

Aligarh Muslim University

View shared research outputs
Researchain Logo
Decentralizing Knowledge