Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nafees A. Khan is active.

Publication


Featured researches published by Nafees A. Khan.


Journal of Plant Physiology | 2011

Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars.

Rahat Nazar; Noushina Iqbal; Shabina Syeed; Nafees A. Khan

Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na(+) and Cl(-) content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na(+) and Cl(-) content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.


Plant Cell and Environment | 2012

Role of ethylene in alleviation of cadmium‐induced photosynthetic capacity inhibition by sulphur in mustard

Asim Masood; Noushina Iqbal; Nafees A. Khan

Sulphur (S) assimilation leads to the formation of glutathione (GSH) and alleviation of cadmium (Cd) stress. GSH is synthesized from its immediate metabolite cysteine, which also serves as a metabolite for ethylene formation through S-adenosyl methionine. To assess the role of ethylene in S-induced alleviation of Cd stress on photosynthesis, the effects of S or ethephon (ethylene source) on GSH and ethylene were examined in mustard (Brassica juncea L. cv. Varuna). Sufficient-S at 100 mg S kg(-1) soil alleviated Cd-induced photosynthetic inhibition more than excess-S (200 mg S kg(-1) soil) via ethylene by increased GSH. Under Cd stress, plants were less sensitive to ethylene, despite high ethylene evolution, and showed photosynthetic inhibition. Ethylene sensitivity of plants increased with ethephon or sufficient-S, triggering the induction of an antioxidant system, and leading to increased photosynthesis even under Cd stress. The effects of ethephon and S under Cd stress were similar. The effects of S were reversed by ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), suggesting that ethylene plays an important role in S-induced alleviation of Cd stress on photosynthesis.


Plant Science | 2012

Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.).

Sarvajeet Singh Gill; Nafees A. Khan; Narendra Tuteja

Metal contamination of soils has become a worldwide problem and great environmental threat, as these metals accumulate in soils and plants in excess, and enter the food chain. Increased cadmium (Cd) uptake from contaminated soils leads to altered plant metabolism and limits the crop productivity. The experimental crop, Lepidium sativum L. (Garden Cress, Family: Brassicaceae) is a medicinally and economically important plant. An experiment was conducted to examine the effect of different concentrations of Cd (0, 25, 50 or 100 mg kg(-1) soil) on the performance of L. sativum. Cd accumulation in roots and leaves (roots>leaves) increased with the increaseing Cd concentration in soil. High Cd concentration (100mg Cd kg(-1) soil) inhibited the leaf area and plant dry mass and significant decline in net photosynthetic rate (P(N)), stomatal conductance (gs), intercellular CO(2) (Ci), chlorophyll (Chl a, Chl b, total Chl) content, carbonic anhydrase (CA; E.C. 4.2.1.1) activity, nitrate reductase (NR; E.C. 1.6.6.1) activity and nitrogen (N) content was also observed. However, ATP-sulfurylase (ATP-S; EC. 2.7.7.4) activity, sulfur (S) content and activities of antioxidant enzymes such as superoxide dismutase (SOD; E.C. 1.15.1.1); catalase (CAT; E.C. 1.11.1.6); ascorbate peroxidase (APX; E.C. 1.11.1.11) and glutathione reductase (GR; E.C. 1.6.4.2) and glutathione (GSH) content were increased. Specifically, the decrease in NR activity and N content showed that Cd affects N metabolism negatively; whereas, the increase in ATP-S activity and S content suggests the up-regulation of S assimilation pathway for possible Cd tolerance in coordination with enhanced activities of antioxidant enzymes and GSH. High Cd concentration (100mg Cd kg(-1) soil) perturbs the L. sativum growth by interfering with the photosynthetic machinery and disrupting the coordination between carbon, N and S metabolism. On the other hand, at low Cd concentration (25mg Cd kg(-1) soil) co-ordination of S and N metabolism complemented to the antioxidant machinery to protect the growth and photosynthesis of L. sativum plants.


Frontiers in Plant Science | 2015

Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

M. Iqbal R. Khan; Mehar Fatma; Tasir S. Per; Naser A. Anjum; Nafees A. Khan

Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context.


Journal of Plant Physiology | 2015

Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat.

M. Iqbal R. Khan; Faroza Nazir; Mohd Asgher; Tasir S. Per; Nafees A. Khan

We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced oxidative stress by increasing proline accumulation as a result of increased activity of glutamyl kinase (GK) and decreased activity of proline oxidase (PROX). These nutrients also induced the activity of ATP-sulfurylase and serine acetyl transferase and the content of cysteine (Cys), a precursor for the synthesis of both reduced glutathione (GSH) and ethylene. Further, application of Se and S to plants under Cd stress reduced ethylene level and increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPX), reduced oxidative stress and improved photosynthesis and growth. The involvement of ethylene in Se and S-mediated alleviation of Cd stress was substantiated with the use of ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The use of AVG reversed the effects of Se and S on ethylene, content of proline and GSH and photosynthesis. The results suggested that Se and S both reversed Cd-induced oxidative stress by regulating ethylene formation, proline and GSH metabolism. Thus, Se or S-induced regulatory interaction between ethylene and proline and GSH metabolism may be used for the reversal of Cd-induced oxidative stress.


Plant Physiology and Biochemistry | 2014

Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.)

M. Iqbal R. Khan; Mohd Asgher; Nafees A. Khan

The influence of salicylic acid (SA) in alleviation of salt stress in mungbean (Vigna radiata L.) through modulation of glycinebetaine (GB) and ethylene was studied. SA application at 0.5 mM increased methionine (Met) and GB accumulation in plants concomitant with the suppression of ethylene formation by inhibiting 1-aminocyclopropane carboxylic acid synthase (ACS) activity more conspicuously under salt stress than no stress. The increased GB accumulation together with reduced ethylene under salt stress by SA application was associated with increased glutathione (GSH) content and lower oxidative stress. These positive effects on plant metabolism induced by SA application led to improved photosynthesis and growth under salt stress. These results suggest that SA induces GB accumulation through increased Met and suppresses ethylene formation under salt stress and enhances antioxidant system resulting in alleviation of adverse effects of salt stress on photosynthesis and growth. These effects of SA were substantiated by the findings that application of SA-analogue, 2, 6, dichloro-isonicotinic acid (INA) and ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) resulted in similar effects on Met, GB, ethylene production, photosynthesis and growth under salt stress. Future studies on the interaction between SA, GB and ethylene could be exploited for adaptive responses of plants under salt stress.


Protoplasma | 2015

Minimising toxicity of cadmium in plants—role of plant growth regulators

Mohd Asgher; M. Iqbal R. Khan; Naser A. Anjum; Nafees A. Khan

A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.


Plant Signaling & Behavior | 2013

Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation

M. Iqbal R. Khan; Noushina Iqbal; Asim Masood; Tasir S. Per; Nafees A. Khan

We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40°C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.


Plant Physiology and Biochemistry | 2013

Current understanding on ethylene signaling in plants: the influence of nutrient availability.

Noushina Iqbal; Alice Trivellini; Asim Masood; Antonio Ferrante; Nafees A. Khan

The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.


Russian Journal of Plant Physiology | 2011

Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism

Naser A. Anjum; Shahid Umar; Muhammad Iqbal; Nafees A. Khan

Ascorbate (AsA)-glutathione (GSH) cycle metabolism is an essential mechanism for the resistance of plants under stress conditions. In a greenhouse pot experiment, the influence of cadmium (Cd) (25, 50, and 100 mg/kg soil) on plant dry weight and leaf area, photosynthetic parameters (net photosynthetic rate (PN) and chlorophyll (Chl) content) and oxidative stress, and the possible protective role of AsA-GSH cycle metabolism was studied in two mung bean (Vigna radiata (L.) Wilczek.) cvs. Pusa 9531 (Cd-tolerant) and PS 16 (Cd-susceptible) at 30 days after sowing. The contents of thiobarbituric acid-reactive substances (TBARS), H2O2, and the leakage of ions were the highest at 100 mg Cd/kg soil, and the effect was more pronounced in cv. PS 16 than in cv. Pusa 9531. This was concomitant with the strongest decreases in PN, plant dry weight, and leaf area. The changes in the AsA-GSH redox state and an increase in AsA-GSH-regenerating enzymes, such as glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and other antioxidant enzymes, such as superoxide dismutase and ascorbate peroxidase, strongly supported over-utilization of AsA-GSH in Cd-treated plants. However, the oxidative stress caused by Cd toxicity was partially overcome by AsA-GSH-based detoxification mechanism in the two genotypes studied because an increases in lipid peroxidation (TBARS, ion leakage) and H2O2 content were accompanied by a corresponding decrease in reduced AsA and GSH pools. Thus, changes in AsA-GSH pools and the coordination between AsA-GSH-regenerating enzymes and other enzymatic antioxidants of the leaves suggest their relevance to the defense against Cd stress.

Collaboration


Dive into the Nafees A. Khan's collaboration.

Top Co-Authors

Avatar

Asim Masood

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noushina Iqbal

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Tasir S. Per

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Mohd Asgher

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Rahat Nazar

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Mehar Fatma

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge