Mohd Nordin Ibrahim
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohd Nordin Ibrahim.
Drying Technology | 2013
M. S. H. Sarker; Mohd Nordin Ibrahim; N. Ab. Aziz; Mohd Salleh Punan
The performances of industrial dryers, namely the inclined bed dryer (IBD) and the fluidized bed dryer (FBD) combined with IBD, in terms of drying kinetics, energy consumption, and quality of paddy were investigated in this study. Drying parameters used in a single-stage paddy drying using IBD and a two-stage drying using FBD combined with IBD were analyzed to assess the existing performances of the drying techniques. The overall performances of the current drying practices exhibited inconsistent results with the operating parameters, such as drying air temperature, drying time, and air flow rate among the drying process lines. Distinct variations in moisture reduction and energy consumption of the drying systems were identified. Poor performance of the industrial fluidized bed dryer was observed in the case of drying in low capacity that caused higher specific energy consumption. However, the quality of milled rice obtained from both drying systems was found to be almost similar. Minimal process time (i.e., up to 24.5% less) was found in the paddy dried with FBD as the first-stage drying, followed by IBD as the second-stage drying.
Biotechnology and Bioprocess Engineering | 2007
Fui Chin Chong; Being Ti Tey; Zanariah Mohd. Dom; Kok Hing Cheong; Budiatman Satiawihardja; Mohd Nordin Ibrahim; Russly Abdul Rahman; Dayang Radiah Awang Biak; Tau Chuan Ling
Rice bran lipase (RBL) was delipidated to enhance its stability in organic solvent and its esterification activity at elevated temperature. The esterification activity of delipidated RBL increased as temperature was increased from 45 to 65°C. The esterification activity of delipidated RBL at 65°C was about 14 times greater than that of the non-delipidated RBL. As temperature was further increased to 75°C, the non-delipidated RBL lost all esterification activity, whereas the delipidated RBL retained approximately 48% of its esterilication activity. The delipidated RBL maintained a relative esterification activity greater than 80% after 16 h of incubation in hexane, whereas the non-delipidated RBL maintained a relative esterification activity of only 50%. A method for production of acylglycerol using delipidated RBL to esterify palm oil fatty acid distillate (PFAD) with glycerol in hexane was successfully developed. The effects of reaction temperatures and type of water removal agents (silica gel and molecular sieve) on the degree of esterification were also examined. A 4 h reaction at 65°C, catalyzed by delipidated RBL and using silica gel as the water removal agent resulted in 53.8% esterification. Thin layer chromatography analysis suggested that the esterified product was primarily comprised of mono-and di-acylglycerols.
Applied Biochemistry and Biotechnology | 2003
Atif A. A. Yassin; Ibrahim O. Mohamed; Mohd Nordin Ibrahim; Mohd S. A. Yusoff
Immobilized PS-C ‘Amano’ II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60°C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5°C to 36.3, 37.0, and 40.0°C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
Biotechnology and Bioprocess Engineering | 2006
Yen Mei Chow; Beng Ti Tey; Mohd Nordin Ibrahim; Arbakariya Ariff; Tau Chuan Ling
A dense, pellicular UpFront adsorbent (ϱ=1.5 g/cm3, UpFront Chromatography, Cophenhagen, Denmark) was characterized in terms of hydrodynamic properties and protein adsorption performance in expanded bed chromatography. Cibacron Blue 3GA was immobilised into the adsorbent and protein adsorption of bovine serum albumin (BSA) was selected to test the setup. The Bodenstein number and axial dispersion coefficient estimated for this dense pellicular adsorbent was 54 and 1.63×10−5 m2/s, respectively, indicating a stable expanded bed. It could be shown that the BSA protein was captured by the adsorbent in the presence of 30% (w/v) of whole-yeast cells with an estimated dynamic binding capacity (C/C0=0.01) of approximately 6.5 mg/mL adsorbent.
Biotechnology and Bioprocess Engineering | 2005
Yen Mei Chow; Beng Ti Tey; Mohd Nordin Ibrahim; Arbakariya Ariff; Tau Chuan Ling
The influence of whole yeast cells (0–15% w/v) on the protein adsorption performance in dye-ligand chromatography was explored. The adsorption of a model protein, bovine serum albumin (BSA), was selected to demonstrate this approach. The UpFront adsorbent (ρ=1.5 g/cm3) derivatised with Cibacron Blue 3GA and a commercially available expanded bed column (20 mm i.d.) from UpFront Chromatography, Denmark, were employed in the batch binding and expanded bed operation. The BSA binding capacity was demonstrated to not be adversely affected by the presence of yeast cells. The dynamic binding capacity of BSA at aC/C0=0..1 biomass concentration of 5, 10, 15% w/v were 9, 8, and 7.5 mg/mL of settled adsorbent, respectively.
Polymer-plastics Technology and Engineering | 2002
S. N. Maiti; B. H. Lopez; Mohd Nordin Ibrahim
Rheological properties of isotactic polypropylene/kaolin composites have been evaluated at kaolin concentrations 0–17.4 vol% at 493K. The systems obeyed power-law model in shear stress–shear rate variations and were shear thinning, which increased with kaolin content. Apparent melt viscosity decreased up to 5% kaolin and increased with further increase in kaolin concentration. First normal stress difference increased up to 5 vol% kaolin and decreased beyond this kaolin content. Use of a titanate coupling agent modified the rheological properties through an enhanced bonding between the filler and the polymer.
international conference on modeling, simulation, and applied optimization | 2011
Lee Woun Tan; Farah Saleena Taip; Mohd Nordin Ibrahim; Raja Kamil
Spray drying is a removal of moisture from liquid feed by breaking into droplets in a hot medium to convert into powder form. In order to ensure the product quality is at the desired specification, a good control system and good understanding on the dynamic behavior should be considered. The aims of this study are to develop empirical model of spray drying process and improve the process by implementation of PI controller. A nozzle atomizer spray dryer, Lab-Plant SD 05 Laboratory Scale Spray Dryer was used. The liquid feed was Sunquick Concentrated Orange Juice and DE 10–15 maltodextrin as the drying agent. The effects of inlet air temperature and maltodextrin concentration on final moisture content and outlet air temperature were investigated. From investigation, the effect of inlet air temperature on moisture content and outlet air temperature was greater than maltodextrin concentration. Thus, inlet air temperature was selected as manipulated variable. For modeling, the model obtained can be represented as first order process with time delay (FOPTD). In order to improve the process, the model obtained was used in simulation studies to determine the suitable tuning method by PI controller. The PI controllers were tuned by direct synthesis, min IAE method and Cohen-coon. From the observation, direct synthesis method is the most suitable tuning method for PI controller in spray drying process.
Biotechnology and Bioprocess Engineering | 2006
Yen Mei Chow; Beng Ti Tey; Mohd Nordin Ibrahim; Arbakariya Ariff; Tau Chuan Ling
The bed stability of Streamline DEAE (p=1.2 g/mL) in a 20 mm (i.d.) glass expanded bed contactor, and its performance on the recovery of glucose 6-phosphate dehydrogenase (G6PDH) from unclarified yeast homogenate were investigated. A residence time distribution study showed that a stable expanded bed was achieved. The theoretical plate and Bodenstein numbers determined were 25 and 53, respectively. A recovery yield of 87% and purification factor of 4.1 were achieved in the operation using 5% (w/v) biomass concentration feedstock. The performance of the anion exchange EBAC was still considerable good at a biomass concentration as high as 15% (w/v).
Drying Technology | 2015
M. S. H. Sarker; Mohd Nordin Ibrahim; N. Ab. Aziz; Mohd Salleh Punan
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.
Journal of Dietary Supplements | 2018
M. A. Ali; Yus Aniza Yusof; Nyuk Ling Chin; Mohd Nordin Ibrahim; Sadaf Muneer
ABSTRACT Moringa oleifera leaves were selected as a model due to their hundreds of health benefits. On the other hand, the powder of these leaves has exhibited poor flowability, low tensile strength, bitter taste, poor dissolution rate, and lack of information regarding dosage. These are the common hurdles and limitations in the adaptation of herbal-based medications. Therefore, a comprehensive study was planned to introduce herbal-based medicines into mainstream medicines by standardization according to the U.S. Food and Drug Administration (FDA) and international pharmaceutical standards. A Simplex Lattice Design (SLD) of Design Expert 8.0 software was used to formulate different concentrations of superdisintegrant, binder/diluent, and sweeteners. An Instron Universal Testing machine coupled with a 13 mm stainless cylindrical die was used to manufacture tablets by means of direct compression method at 20 kN applied force. Therefore, selection of excipients was made on the basis of their tensile strength, flowability, and taste-masking properties. Optimum formulation was tested on rabbits for toxicity and growth rate. All formulated tablets were evaluated on standard parameters for orally disintegrating tablets described by the Food and Drug Authority (U.S.). The optimum formulation fulfills all standard parameters such as hardness, disintegration time, friability, and dissolution rate. The present formulation showed no toxicity when tested on rabbits. The present study provides a fundamental understanding of the tableting characteristics of natural medicines. The present study provides information that will help to overcome the challenges.