Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Molly L. Kile is active.

Publication


Featured researches published by Molly L. Kile.


Environmental Health Perspectives | 2007

Dietary Arsenic Exposure in Bangladesh

Molly L. Kile; E. Andres Houseman; Carrie V. Breton; Thomas J. Smith; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; David C. Christiani

Background Millions of people in Bangladesh are at risk of chronic arsenic toxicity from drinking contaminated groundwater, but little is known about diet as an additional source of As exposure. Methods We employed a duplicate diet survey to quantify daily As intake in 47 women residing in Pabna, Bangladesh. All samples were analyzed for total As, and a subset of 35 samples were measured for inorganic arsenic (iAs) using inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell. Results Median daily total As intake was 48 μg As/day [interquartile range (IQR), 33–67) from food and 4 μg As/day (IQR, 2–152) from drinking water. On average, iAs comprised 82% of the total As detected in dietary samples. After adjusting for the estimated inorganic fraction, 34% [95% confidence interval (CI), 21–49%] of all participants exceeded the World Health Organization’s provisional tolerable daily intake (PTDI) of 2.1 μg As/kg-day. Two of the 33 women who used a well with < 50 μg As/L exceeded this recommendation. Conclusions When drinking water concentrations exceeded the Bangladesh drinking water standard of 50 μg As/L, ingested water was the dominant source of exposure. However, as drinking water As concentrations decrease, the relative contribution of dietary As sources becomes more important to ingested dose. The combined intake from both diet and drinking water can cause some individuals to exceed the PTDI in spite of using a tube well that contains < 50 μg As/L.


Environmental Health Perspectives | 2012

Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes

Molly L. Kile; Andrea Baccarelli; Elaine Hoffman; Letizia Tarantini; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; Golam Mostofa; Yu-Mei Hsueh; Robert O. Wright; David C. Christiani

Background: Arsenic is an epigenetic toxicant and could influence fetal developmental programming. Objectives: We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. Methods: Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. Results: Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1–230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. Conclusions: Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects.


Journal of Occupational and Environmental Medicine | 2007

Maternal arsenic exposure associated with low birth weight in Bangladesh.

Karen L. Huyck; Molly L. Kile; Golam Mahiuddin; Quazi Quamruzzaman; Mahmuder Rahman; Carrie V. Breton; Christine Dobson; Janna Frelich; Elaine Hoffman; Jabed Yousuf; Sakila Afroz; Shofiqul Islam; David C. Christiani

Objective: To characterize the effects of maternal arsenic exposure on birth weight. Methods: Hair, toenail, and drinking water samples were collected from pregnant women (n = 52) at multiple time points during pregnancy and from their newborns after birth. Total arsenic was measured using inductively coupled plasma-mass spectrometry. The association between arsenic and birth weight was investigated using linear and logistic regression models. Results: Maternal hair arsenic measured early in pregnancy was associated with decreased birth weight (&bgr; = −193.5 ± 90.0 g, P = 0.04). Maternal hair and drinking water arsenic levels measured at first prenatal visit were significantly correlated with newborn hair arsenic level (&rgr; = 0.32, P = 0.04 and &rgr; = 0.31, P = 0.04). Conclusions: Results suggest that maternal arsenic exposure early in pregnancy negatively affects newborn birth weight and that maternal hair provides the best integrated measure of arsenic exposure.


Epigenetics | 2014

Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood

Molly L. Kile; E. Andres Houseman; Andrea Baccarelli; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mostofa; Andres Cardenas; Robert O. Wright; David C. Christiani

Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range < 1- 510 µg/L). Log10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.


Environmental Health Perspectives | 2009

Variability in biomarkers of arsenic exposure and metabolism in adults over time.

Molly L. Kile; Elaine Hoffman; Yu Mei Hsueh; Sakila Afroz; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; Louise Ryan; David C. Christiani

Background Urinary arsenic metabolites (UAs) are used as biomarkers of exposure and metabolism. Objectives To characterize inter- and intraindividual variability in UAs in healthy individuals. Methods In a longitudinal study conducted in Bangladesh, we collected water and spot urine samples from 196 participants every 3 months for 2 years. Water arsenic (As) was measured by inductively coupled plasma–mass spectrometry and urinary As [arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)] were detected using high-performance liquid chromatography–hydride-generated atomic absorption spectrometry. We used linear mixed-effects models to compute variance components and evaluate the association between UAs and selected factors. Results The concentrations of UAs were fairly reproducible within individuals, with intraclass correlation coefficients (ICCs) of 0.41, 0.35, 0.47, and 0.49 for inorganic As (InAs), MMA, DMA, and total urinary As (TUA). However, when expressed as a ratio, the percent InAs (%InAs), %MMA, and %DMA were poorly reproducible within individuals, with ICCs of 0.16, 0.16, and 0.17, respectively. Arsenic metabolism was significantly associated with sex, exposure, age, smoking, chewing betel nut, urinary creatinine, and season. Specificity and sensitivity analyses showed that a single urine sample adequately classified a participant’s urinary As profile as high or low, but TUA had only moderate specificity for correctly classifying drinking water exposures. Conclusions Epidemiologic studies should use both urinary As concentrations and the relative proportion of UAs to minimize measurement error and to facilitate interpretation of factors that influence As metabolism.


PLOS ONE | 2010

Correlation of Global and Gene-Specific DNA Methylation in Maternal-Infant Pairs

Molly L. Kile; Andrea Baccarelli; Letizia Tarantini; Elaine Hoffman; Robert O. Wright; David C. Christiani

The inheritance of DNA methylation patterns is a popular theory to explain the influence of parental genetic and environmental factors on the phenotype of their offspring but few studies have examined this relationship in humans. Using 120 paired maternal-umbilical cord blood samples randomly selected from a prospective birth cohort in Bangladesh, we quantified DNA methylation by pyrosequencing seven CpG positions in the promoter region of p16, four CpG positions in the promoter region of p53, LINE-1 and Alu. Positive correlations were observed between maternal and umbilical cord blood at p16, LINE-1, and Alu but not p53. Multiple linear regression models observed a significant association between maternal and umbilical cord blood at LINE-1 and Alu (LINE-1: β = 0.63, p<0.0001; Alu: β = 0.28, p = 0.009). After adjusting for multiple comparisons, maternal methylation of p16 at position 4 significantly predicted methylation at the same position in umbilical cord blood (β = 0.43, p = <0.0001). These models explained 48%, 5% and 16% of the observed variability in umbilical cord %5mC for LINE-1, Alu and p16 at position 4, respectively. These results suggest that DNA methylation in maternal blood was correlated with her offspring at LINE-1, Alu, and p16 but not p53. Additional studies are needed to confirm whether these observed associations were due to the inheritance of epigenetic events or the shared environment between mother and fetus. Future studies should also use a multi-generational family-based design that would quantify both maternal and paternal contributions to DNA methylation in offspring across more than one generation.


BMC Bioinformatics | 2016

Reference-free deconvolution of DNA methylation data and mediation by cell composition effects

E. Andres Houseman; Molly L. Kile; David C. Christiani; Tan A. Ince; Karl T. Kelsey; Carmen J. Marsit

BackgroundRecent interest in reference-free deconvolution of DNA methylation data has led to several supervised methods, but these methods do not easily permit the interpretation of underlying cell types.ResultsWe propose a simple method for reference-free deconvolution that provides both proportions of putative cell types defined by their underlying methylomes, the number of these constituent cell types, as well as a method for evaluating the extent to which the underlying methylomes reflect specific types of cells. We demonstrate these methods in an analysis of 23 Infinium data sets from 13 distinct data collection efforts; these empirical evaluations show that our algorithm can reasonably estimate the number of constituent types, return cell proportion estimates that demonstrate anticipated associations with underlying phenotypic data; and methylomes that reflect the underlying biology of constituent cell types.ConclusionsOur methodology permits an explicit quantitation of the mediation of phenotypic associations with DNA methylation by cell composition effects. Although more work is needed to investigate functional information related to estimated methylomes, our proposed method provides a novel and useful foundation for conducting DNA methylation studies on heterogeneous tissues lacking reference data.


American Journal of Epidemiology | 2011

A Pathway-based Analysis of Urinary Arsenic Metabolites and Skin Lesions

Molly L. Kile; Elaine Hoffman; Ema G. Rodrigues; Carrie V. Breton; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; Yu Mei Hsueh; David C. Christiani

Inorganic arsenic is metabolized to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Limited evidence suggests that the ability to fully metabolize arsenic into DMA influences susceptibility to disease. To determine whether percentage of MMA was predictive of disease, the authors used data from a case-control study conducted in Bangladesh (2001-2003). Persons who were diagnosed with keratosis, melanosis, Bowens disease, or squamous cell carcinoma were matched on age, sex, and village to persons without these conditions. This analysis was restricted to persons who had no missing data on covariates (859 cases, 868 controls). A path analysis was used to evaluate simultaneously the association between the percentage of all urinary arsenic metabolites and the odds of skin lesions using PROC CALIS in SAS, version 9.1 (SAS Institute, Inc., Cary, North Carolina) and Mplus, version 6.1 (Muthén & Muthén, Los Angeles, California). The odds of skin lesions were significantly associated with log(10) percentage of MMA (adjusted odds ratio (OR(adj)) = 1.56, 95% confidence interval (CI): 1.15, 2.12) but not log(10) percentage of inorganic arsenic (OR(adj) = 1.06, 95% CI: 0.75, 1.50) or log(10) percentage of DMA (OR(adj) = 1.07, 95% CI: 0.33, 3.46). This novel analysis confirmed that persons who excrete a higher proportion of MMA have a greater risk of skin lesions after data are adequately controlled for urinary arsenic metabolites, current arsenic exposure, and other risk factors.


Cancer Epidemiology, Biomarkers & Prevention | 2005

Toenail Arsenic Concentrations, GSTT1 Gene Polymorphisms, and Arsenic Exposure from Drinking Water

Molly L. Kile; E. Andres Houseman; Ema G. Rodrigues; Thomas J. Smith; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; Li Su; David C. Christiani

Toenail arsenic (As) concentrations were evaluated as a biomarker of inorganic As (Asin) exposure in a population residing in an As-endemic region of Bangladesh. Drinking water and toenail samples were collected from 48 families (n = 223) every 3 months for 2 years and analyzed for As using inductively coupled plasma-mass spectrometry. Drinking water collected 3, 6, and 9 months before each toenail sample collection was combined into a weighted lagged exposure variable. The contribution of each water sample to the measured toenail As concentration was estimated using maximum likelihood that accounted for fluctuations in drinking water exposure and toenail growth. The best model attributed 69%, 14%, and 17% of the toenail As content to drinking water exposures that occurred 3, 6, and 9 months before toenail collection [95% confidence intervals (95% CI), 0.46-0.97, 0.00-0.31, and 0.03-0.35, respectively]. Generalized additive mixed models using penalized regression splines were employed to model the data. Below a drinking water concentration of 2 μg As/L, no relationship between drinking water As and toenail As concentrations was observed. Above this concentration, toenail As content increased in a dose-dependent fashion as drinking water As increased. Age was a significant effect modifier of drinking water As exposure on toenail As (β = 0.01; 95% CI, 0.002-0.02). Individuals possessing GSTT1-null genotypes had significantly more As in their toenails in contrast to GSTT1 wild-type individuals (β = 0.11; 95% CI, 0.06-0.2). Therefore, it seems that GSTT1 modifies the relationship between Asin exposure and toenail Asin content.


Epigenetics | 2015

Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero

Andres Cardenas; Devin C. Koestler; E. Andres Houseman; Brian P. Jackson; Molly L. Kile; Margaret R. Karagas; Carmen J. Marsit

Mercury and arsenic are known developmental toxicants. Prenatal exposures are associated with adverse childhood health outcomes that could be in part mediated by epigenetic alterations that may also contribute to altered immune profiles. In this study, we examined the association between prenatal mercury exposure on both DNA methylation and white blood cell composition of cord blood, and evaluated the interaction with prenatal arsenic exposure. A total of 138 mother-infant pairs with postpartum maternal toenail mercury, prenatal urinary arsenic concentrations, and newborn cord blood were assessed using the Illumina Infinium Methylation450 array. White blood cell composition was inferred from DNA methylation measurements. A doubling in toenail mercury concentration was associated with a 2.5% decrease (95% CI: 5.0%, 1.0%) in the estimated monocyte proportion. An increase of 3.5% (95% CI: 1.0, 7.0) in B-cell proportion was observed for females only. Among the top 100 CpGs associated with toenail mercury levels (ranked on P-value), there was a significant enrichment of loci located in North shore regions of CpG islands (P = 0.049), and the majority of these loci were hypermethylated (85%). Among the top 100 CpGs for the interaction between arsenic and mercury, there was a greater than expected proportion of loci located in CpG islands (P = 0.045) and in South shore regions (P = 0.009) and all of these loci were hypermethylated. This work supports the hypothesis that mercury may be contributing to epigenetic variability and immune cell proportion changes, and suggests that in utero exposure to mercury and arsenic, even at low levels, may interact to impact the epigenome.

Collaboration


Dive into the Molly L. Kile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Smit

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Hoffman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert O. Wright

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge