Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mong-Lien Wang is active.

Publication


Featured researches published by Mong-Lien Wang.


Cancer Research | 2010

Coexpression of Oct4 and Nanog Enhances Malignancy in Lung Adenocarcinoma by Inducing Cancer Stem Cell–Like Properties and Epithelial–Mesenchymal Transdifferentiation

Shih-Hwa Chiou; Mong-Lien Wang; Yu-Ting Chou; Chi-Jen Chen; Chun-Fu Hong; Wang-Ju Hsieh; Hsin-Tzu Chang; Ying-Shan Chen; Tzu-Wei Lin; Han-Sui Hsu; Cheng-Wen Wu

Epithelial-mesenchymal transition (EMT), a critical process of cancer invasion and metastasis, is associated with stemness property of cancer cells. Though Oct4 and Nanog are homebox transcription factors essential to the self-renewal of stem cells and are expressed in several cancers, the role of Oct4/Nanog signaling in tumorigenesis is still elusive. Here microarray and quantitative real-time PCR analysis showed a parallel, elevated expression of Oct4 and Nanog in lung adenocarcinoma (LAC). Ectopic expressions of Oct4 and Nanog in LACs increased the percentage of CD133-expressing subpopulation and sphere formation, enhanced drug resistance, and promoted EMT. Ectopic expressions of Oct4 and Nanog activated Slug and enhanced the tumor-initiating capability of LAC. Furthermore, double knockdown of Oct4 and Nanog suppressed the expression of Slug, reversed the EMT process, blocked the tumorigenic and metastatic ability, and greatly improved the mean survival time of transplanted immunocompromised mice. The immunohistochemical analysis demonstrated that expressions of Oct4, Nanog, and Slug were present in high-grade LAC, and triple positivity of Oct4/Nanog/Slug indicated a worse prognostic value of LAC patients. Our results support the notion that the Oct4/Nanog signaling controls epithelial-mesenchymal transdifferentiation, regulates tumor-initiating ability, and promotes metastasis of LAC.


Journal of Controlled Release | 2012

Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma.

Guang-Yuh Chiou; Jong-Yuh Cherng; Han-Shui Hsu; Mong-Lien Wang; Chun-Ming Tsai; Kai-Hsi Lu; Yueh Chien; Shih-Chieh Hung; Yi-Wei Chen; Chiang-Ing Wong; Ling-Ming Tseng; Pin-I Huang; Cheng-Chia Yu; Wen-Huh Hsu; Shih-Hwa Chiou

The high invasiveness and frequent recurrence of lung adenocarcinoma (LAC) are major reasons for treatment failures and poor prognoses. Alterations in microRNAs (miRNAs) expression have been shown in lung cancers. Recent reports have demonstrated that tumors contain a small subpopulation of cancer stem cells (CSCs) that possesses self-renewing capacity and is responsible for tumor malignancy including metastasis, relapse, and chemoradioresistance. However, a miRNAs-based therapeutic approach in LAC-associated CSCs (LAC-CSCs) is still blurred. Using miRNA/mRNA-microarray and Quantitative RT-PCR, we found that the expression of miR145 is negatively correlated with the levels of Oct4/Sox2/Fascin1 in LAC patient specimens, and an Oct4(high)Sox2(high)Fascin1(high)miR145(low) phenotype predicted poor prognosis. We enriched LAC-CSCs by side population sorting or identification of CD133 markers and found that LAC-CSCs exhibited low miR145 and high Oct4/Sox2/Fascin1 expression, CSC-like properties, and chemoradioresistance. To clarify the role of miR145, we used a polyurethane-short branch-polyethylenimine (PU-PEI) as the vehicle to deliver miR145 into LAC-CSCs. PU-PEI-mediated miR145 delivery reduced CSC-like properties, and improved chemoradioresistance in LAC-CSCs by directly targeting Oct4/Sox2/Fascin1. Importantly, the repressive effect of miR145 on tumor metastasis was mediated by inhibiting the epithelial-mesenchymal transdifferentiation (EMT) and metastastic ability, partially by regulating Oct4/Sox2/Fascin1, Tcf4, and Wnt5a. Finally, in vivo study showed that PU-PEI-mediated miR145 delivery to xenograft tumors reduced tumor growth and metastasis, sensitized tumors to chemoradiotherapies, and prolonged the survival times of tumor-bearing mice. Our results demonstrated that miR145 acts as a switch regulating lung CSC-like and EMT properties, and provide insights into the clinical prospect of miR145-based therapies for malignant lung cancers.


OncoTargets and Therapy | 2013

Targeting cancer stem cells: emerging role of Nanog transcription factor.

Mong-Lien Wang; Shih-Hwa Chiou; Cheng-Wen Wu

The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer.


Cancer Research | 2012

Oncostatin M Modulates the Mesenchymal–Epithelial Transition of Lung Adenocarcinoma Cells by a Mesenchymal Stem Cell-Mediated Paracrine Effect

Mong-Lien Wang; Chih-Ming Pan; Shih-Hwa Chiou; Wen-Hsin Chen; Hsiang-Yi Chang; Oscar K. Lee; Han-Sui Hsu; Cheng-Wen Wu

Mesenchymal stem cells (MSC) are strongly associated with tumor progression and have been used as novel cell-based agents to deliver anticancer drugs to tumors. However, controversies about the direct involvement of MSCs in tumor progression suggest that MSCs mediate tumor progression in a cancer type-dependent manner. In this report, we analyzed the functional interactions between human MSCs and lung adenocarcinoma (LAC) cells to determine the therapeutic potential of MSCs in lung cancer. We showed that MSCs effectively inhibited the migration, invasion, and cell-cycle progression of several LAC cell lines. MSCs also enhanced the mesenchymal-epithelial transition (MET) pathway, as evidenced by the reduction of several epithelial-mesenchymal transition-related markers in LAC cells cocultured with MSCs or in MSC-conditioned medium (MSC-CM). By cytokine array analysis, we determined that Oncostatin M (OSM), a differentiation-promoting cytokine, was elevated in the MSC-CM derived from primary MSC cultures. Furthermore, OSM treatment had the same effects as MSC-CM on LAC, whereas neutralizing antibodies to OSM reversed them. Notably, short hairpin RNAs against STAT1, an important downstream target of OSM, hindered the OSM-dependent induction of MET. In vivo xenograft tumor studies indicated that OSM inhibited tumor formation and metastasis of LAC cells, whereas neutralizing OSM in the MSC-CM hampered its inhibitory effects. In conclusion, this study showed that OSM is a paracrine mediator of MSC-dependent inhibition of tumorigenicity and activation of MET in LAC cells. These effects of OSM may serve as a basis for the development of new drugs and therapeutic interventions targeting cancer cells.


Oncotarget | 2016

Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma

Hsiao-Yun Chen; Liang-Ting Lin; Mong-Lien Wang; Shu-Hsien Lee; Ming-Long Tsai; Chi-Chang Tsai; Wei-Hsiu Liu; Tzu-Chien Chen; Yi-Ping Yang; Yi-Yen Lee; Yuh-Lih Chang; Pin-I Huang; Yi-Wei Chen; Wen-Liang Lo; Shih-Hwa Chiou; Ming-Teh Chen

Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.


Carcinogenesis | 2013

The PML isoform IV is a negative regulator of nuclear EGFR’s transcriptional activity in lung cancer

Hong-Yi Kuo; Yi-Chen Chen; Hsiang-Yi Chang; Jen-Chong Jeng; Erh-Hsuan Lin; Chih-Ming Pan; Yu-Wei Chang; Mong-Lien Wang; Yu-Ting Chou; Hsiu-Ming Shih; Cheng-Wen Wu

Epidermal growth factor receptor (EGFR) is a membrane-bound receptor tyrosine kinase, which can transduce intracellular signals responsible for cell proliferation. It is frequently overexpressed and/or constitutively activated in non-small cell lung cancer and thus is considered as a major cause of this disease. Recently, EGFR has been found in the nucleus where the nuclear EGFR (nEGFR) can function as a transcription factor activating the transcription of genes such as cyclin D1 gene (CCND1), which is essential for cell proliferation. Nevertheless, how nEGFRs transcriptional activity is regulated remains unclear. Promyelocytic leukemia protein (PML) is a tumor suppressor, which is lost in various cancers including lung cancer. However, the role of PML in the suppression of lung cancer growth is still unclear. When we investigated the role of PML in the regulation of lung cancer cell growth, we found that PML isoform IV (PMLIV) preferentially represses the growth of lung cancer cells bearing constitutively active EGFR. Besides, when growing in the EGFR activating conditions, the growth of EGFR wild-type bearing A549 cells has been repressed by PMLIV overexpression. We also found that PMLIV can interact physically with nEGFR and represses the transcription of nEGFR target genes. We showed that PMLIV is recruited by nEGFR to the target promoters and reduces the promoter histone acetylation level via HDAC1. Together, our results suggest that PMLIV interacts with nEGFR upon EGFR activation and represses the transcription of nEGFR target genes such as CCND1 and thus leading to inhibition of the lung cancer cell growth.


Oncotarget | 2016

Oncostatin M suppresses metastasis of lung adenocarcinoma by inhibiting SLUG expression through coordination of STATs and PIASs signalings

Chih-Ming Pan; Mong-Lien Wang; Shih-Hwa Chiou; Hsiao-Yun Chen; Cheng-Wen Wu

Oncostatin M (OSM) is linked with multiple biological responses including growth and differentiation. Previous reports showed inhibitory effects of OSM in tumor progression while others showed promoting effects. The dual role of OSM in the development of various cancers is still unclear. We previously described OSM-mediated SLUG suppression, leading to repressed metastasis of lung adenocarcinoma (LAC) cells. However, the underlying mechanism remains elusive. Here, we showed that OSM suppresses SLUG express in LAC cells through a STAT1-dependent transcriptional inhibition. Knockdown of STAT1 reversed the OSM-suppressed SLUG expression and rescued the OSM-mediated inhibition of cell proliferation, migration, and invasion in vitro, as well as pulmonary metastasis in vivo. STAT1 suppressed SLUG transcription through binding to its promoter region in response to OSM. Furthermore, PIAS4, a co-repressor of STAT, and HDAC1 were able to bind to STAT1 on SLUG promoter region, resulting in reduced H3K9 acetylation and suppressed SLUG expression upon OSM treatment. In contrast, PIAS3 bound to activated STAT3, another effector of OSM, in response to OSM and blocked the binding of STAT3 to SLUG promoter region, preventing STAT3-dependent activation of SLUG transcription. Our findings suggested that OSM suppresses SLUG expression and tumor metastasis of LAC through inducing the inhibitory effect of the STAT1-dependent pathway and suppressing the activating effect of STAT3-dependent signaling. These results can serve as a scientific basis for the potential therapeutic intervention of OSM in cancer cells.


Cell Transplantation | 2014

MicroRNA142-3p Promotes Tumor-Initiating and Radioresistant Properties in Malignant Pediatric Brain Tumors

Yi-Yen Lee; Yi-Ping Yang; Ming-Chao Huang; Mong-Lien Wang; Sang-Hue Yen; Pin-I Huang; Yi-Wei Chen; Shih-Hwa Chiou; Yuan-Tzu Lan; Hsin-I Ma; Yang-Hsin Shih; Ming-Teh Chen

Primary central nervous system (CNS) atypical teratoid/rhabdoid tumor (ATRT) is an extremely malignant pediatric brain tumor observed in infancy and childhood. It has been reported that a subpopulation of CD133+ cells isolated from ATRT tumors present with cancer stem-like and radioresistant properties. However, the exact biomolecular mechanisms of ATRT or CD133-positive ATRT (ATRT-CD133+) cells are still unclear. We have previously shown that ATRT-CD133+ cells have pluripotent differentiation ability and the capability of malignant cells to be highly resistant to ionizing radiation (IR). By using microRNA array and quantitative RT-PCR in this study, we showed that expression of miR142-3p was lower in ATRT-CD133+ cells than in ATRT-CD133- cells. miR142-3p overexpression significantly inhibited the self-renewal and tumorigenicity of ATRT-CD133+ cells. On the contrary, silencing of endogenous miR142-3p dramatically increased the tumor-initiating and stem-like cell capacities in ATRT cells or ATRT-CD133- cells and further promoted the mesenchymal transitional and radioresistant properties of ATRT cells. Most importantly, therapeutic delivery of miR142-3p in ATRT cells effectively reduced its lethality by blocking tumor growth, repressing invasiveness, increasing radiosensitivity, and prolonging survival time in orthotropic-transplanted immunocompromised mice. These results demonstrate the prospect of developing novel miRNA-based strategies to block the stem-like and radioresistant properties of malignant pediatric brain cancer stem cells.


Oncotarget | 2016

Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo.

Chi-Hsien Peng; Jen-Hua Chuang; Mong-Lien Wang; Yong-Yu Jhan; Ke-Hung Chien; Yu-Chien Chung; Kuo-Hsuan Hung; Chia-Ching Chang; Chao-Kuei Lee; Wei-Lien Tseng; De-Kuang Hwang; Chia-Hsien Hsu; Tai-Chi Lin; Shih-Hwa Chiou; Shih-Jen Chen

Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruchs basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo.


Scientific Reports | 2018

Promoting Induced Pluripotent Stem Cell-driven Biomineralization and Periodontal Regeneration in Rats with Maxillary-Molar Defects using Injectable BMP-6 Hydrogel

Ke-Hung Chien; Yuh-Lih Chang; Mong-Lien Wang; Jen-Hua Chuang; Ya-Chi Yang; Ming-Cheng Tai; Chien-Ying Wang; Yung-Yang Liu; Hsin-Yang Li; Jiang-Torng Chen; Shou-Yen Kao; Hen-Li Chen; Wen-Liang Lo

Periodontal disease may cause considerable destruction of alveolar bone, periodontal ligaments (PDLs) and cementum and even lead to progressive oral dysfunction. Periodontal tissue regeneration is the ultimate goal of periodontal disease treatment to reconstruct both structures and functions. However, the regenerative efficiency is low, possibly due to the lack of a proper periodontal microenvironment. In this study, we applied an injectable and thermosensitive chitosan/gelatin/glycerol phosphate hydrogel to provide a 3D environment for transplanted stem cells and to enhance stem cell delivery and engraftment. The iPSCs-BMP-6-hydrogel complex promoted osteogenesis and the differentiation of new connective tissue and PDL formation. In animal models of maxillary-molar defects, the iPSCs-BMP-6-hydrogel-treated group showed significant mineralization with increased bone volume, trabecular number and trabecular thickness. Synergistic effects of iPSCs and BMP-6 increased both bone and cementum formation. IPSCs-BMP-6-hydrogel-treated animals showed new bone synthesis (increased ALP- and TRAP-positive cells), new PDL regeneration (shown through Masson’s trichrome staining and a qualification assay), and reduced levels of inflammatory cytokines. These findings suggest that hydrogel-encapsulated iPSCs combined with BMP-6 provide a new strategy to enhance periodontal regeneration. This combination not only promoted stem cell-derived graft engraftment but also minimized the progress of inflammation, which resulted in highly possible periodontal regeneration.

Collaboration


Dive into the Mong-Lien Wang's collaboration.

Top Co-Authors

Avatar

Shih-Hwa Chiou

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Cheng-Wen Wu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Pin-I Huang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yi-Wei Chen

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Chih-Ming Pan

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Yi-Ping Yang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Ming-Teh Chen

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Lo

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yi-Yen Lee

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuh-Lih Chang

Taipei Veterans General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge