Monica Arienzo
Desert Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica Arienzo.
Journal of Geophysical Research | 2017
Florian Mekhaldi; Joseph R. McConnell; Florian Adolphi; Monica Arienzo; Nathan Chellman; Olivia J. Maselli; Andrew D. Moy; Ct Plummer; Michael Sigl; Raimund Muscheler
Knowledge on the occurrence rate of extreme solar storms is strongly limited by the relatively recent advent of satellite monitoring of the Sun. To extend our perspective of solar storms prior to the satellite era and because atmospheric ionization induced by solar energetic particles (SEPs) can lead to the production of odd nitrogen, nitrate spikes in ice cores have been tentatively used to document both the occurrence and intensity of past SEP events. However, the reliability of the use of nitrate in ice records as a proxy for SEP events is strongly debated. This is partly due to equivocal detection of nitrate spikes in single ice cores and possible alternative sources, such as biomass burning plumes. Here we present new continuous high-resolution measurements of nitrate and of the biomass burning species ammonium and black carbon, from several Antarctic and Greenland ice cores. We investigate periods covering the two largest known SEP events of 775 and 994 Common Era as well as the Carrington event and the hard SEP event of February 1956. We report no coincident nitrate spikes associated with any of these benchmark events. We also demonstrate the low reproducibility of the nitrate signal in multiple ice cores and confirm the significant relationship between biomass burning plumes and nitrate spikes in individual ice cores. In the light of these new data, there is no line of evidence that supports the hypothesis that ice cores preserve or document detectable amounts of nitrate produced by SEPs, even for the most extreme events known to date.
Environmental Science & Technology | 2016
Monica Arienzo; Joseph R. McConnell; Nathan Chellman; Alison S. Criscitiello; Mark A. J. Curran; Diedrich Fritzsche; Sepp Kipfstuhl; Robert Mulvaney; M. Nolan; Thomas Opel; Michael Sigl; J-P Steffensen
Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.
Environmental Science & Technology | 2017
Nathan Chellman; Joseph R. McConnell; Monica Arienzo; Gregory T. Pederson; Sarah M. Aarons; Adam Csank
The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Joseph R. McConnell; Andrea Burke; Nelia W. Dunbar; Peter Köhler; Jennie L. Thomas; Monica Arienzo; Nathan Chellman; Olivia J. Maselli; Michael Sigl; Jess F. Adkins; Daniel Baggenstos; J. F. Burkhart; Edward J. Brook; Christo Buizert; Jihong Cole-Dai; T. J. Fudge; Gregor Knorr; Hans-F. Graf; Mackenzie M. Grieman; Nels Iverson; Kenneth C. McGwire; Robert Mulvaney; Guillaume Paris; Rachael H. Rhodes; Eric S. Saltzman; Jeffrey P. Severinghaus; Jørgen Peder Steffensen; Kendrick C. Taylor; Gisela Winckler
Significance Cold and dry glacial-state climate conditions persisted in the Southern Hemisphere until approximately 17.7 ka, when paleoclimate records show a largely unexplained sharp, nearly synchronous acceleration in deglaciation. Detailed measurements in Antarctic ice cores document exactly at that time a unique, ∼192-y series of massive halogen-rich volcanic eruptions geochemically attributed to Mount Takahe in West Antarctica. Rather than a coincidence, we postulate that halogen-catalyzed stratospheric ozone depletion over Antarctica triggered large-scale atmospheric circulation and hydroclimate changes similar to the modern Antarctic ozone hole, explaining the synchronicity and abruptness of accelerated Southern Hemisphere deglaciation. Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Joseph R. McConnell; Andrew Wilson; Andreas Stohl; Monica Arienzo; Nathan Chellman; Sabine Eckhardt; Elisabeth M. Thompson; A. Mark Pollard; Jørgen Peder Steffensen
Significance An 1100 BCE to 800 CE record of estimated lead emissions based on continuous, subannually resolved, and precisely dated measurements of lead pollution in deep Greenland ice and atmospheric modeling shows that European emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion and accelerated during expanded Carthaginian and Roman lead–silver mining primarily in the Iberian Peninsula. Emissions fluctuated synchronously with wars and political instability, particularly during the Roman Republic, reaching a sustained maximum during the Roman Empire before plunging in the second century coincident with the Antonine plague, and remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead–silver mining in ancient economies. Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead–silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead–silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.
Journal of Geophysical Research | 2017
Monica Arienzo; Joseph R. McConnell; Lisa N. Murphy; Nathan Chellman; Sarah B. Das; Sepp Kipfstuhl; Robert Mulvaney
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. Plain Language Summary Future anthropogenic-driven climate change may impact wildfires, yet predicting future changes is hampered by few long-term records of natural wildfires, particularly for the Southern Hemisphere. We document large variations in black carbon deposition during the past 14,000 years from an Antarctic ice core. Black carbon is a tracer for wildfires and a significant climate forcing agent. We show that black carbon in Antarctica closely followed Southern Hemisphere hydroclimate and strength of the South American Summer Monsoon. With future predictions showing significant low-latitude changes in precipitation under increased emissions, the climate-fire linkages presented here suggest future changes South American biomass burning.
Climate of The Past | 2016
Michel Legrand; Joseph R. McConnell; Hubertus Fischer; Eric W. Wolff; Susanne Preunkert; Monica Arienzo; Nathan Chellman; Daiana Leuenberger; Olivia J. Maselli; Philip Place; Michael Sigl; Simon Schüpbach; Mike D. Flannigan
Earth System Science Data Discussions | 2018
Kamolphat Atsawawaranunt; Laia Comas-Bru; Sahar Amirnezhad Mozhdehi; Michael Deininger; Sandy P. Harrison; Andy Baker; Meighan Boyd; Nikita Kaushal; Syed Masood Ahmad; Yassine Ait Brahim; Monica Arienzo; Petra Bajo; Kerstin Braun; Yuval Burstyn; Sakonvan Chawchai; Wuhui Duan; István Gábor Hatvani; Jun Hu; Zoltán Kern; Inga Labuhn; Matthew Lachniet; Franziska A. Lechleitner; Andrew Lorrey; Carlos Pérez-Mejías; Robyn Pickering; Nick Scroxton
Journal of Geophysical Research | 2017
Monica Arienzo; J. R. McConnell; Lisa N. Murphy; Nathan Chellman; Sarah B. Das; Sepp Kipfstuhl; Robert Mulvaney
Journal of Geophysical Research | 2017
Florian Mekhaldi; J. R. McConnell; Florian Adolphi; Monica Arienzo; Nathan Chellman; Olivia J. Maselli; Andrew D. Moy; Ct Plummer; Michael Sigl; Raimund Muscheler