Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Canavesi is active.

Publication


Featured researches published by Monica Canavesi.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

HMG-CoA Reductase Inhibitors Reduce MMP-9 Secretion by Macrophages

Stefano Bellosta; D. Via; Monica Canavesi; P. Pfister; R. Fumagalli; Rodolfo Paoletti; F. Bernini

-Macrophages secrete matrix metalloproteinases (MMPs) that may weaken the fibrous cap of atherosclerotic plaque, predisposing its fissuration. The 92-kDa gelatinase B (MMP-9) has been identified in abdominal aortic aneurysms and in atherosclerotic tissues. Fluvastatin, through the inhibition of the isoprenoid pathway, inhibits major processes of atherogenesis in experimental models (smooth muscle cell migration and proliferation and cholesterol accumulation in macrophages). We studied the effect of fluvastatin on the activity of MMP-9 in mouse and human macrophages in culture. Conditioned media of cells treated for 24 hours with fluvastatin were analyzed by gelatin zymography. In mouse macrophages, fluvastatin (5 to 100 micromol/L) significantly inhibited in a dose-dependent manner MMP-9 activity from 20% to 40% versus control. The drug, at a concentration as low as 5 micromol/L, inhibited MMP-9 activity ( approximately 30%) in human monocyte-derived macrophages as well. Phorbol esters (TPA, 50 ng/mL) stimulated MMP-9 activity by 50%, and fluvastatin inhibited this enhanced activity up to 50% in both mouse and human macrophages. The above results on the secretion of MMP-9 were confirmed by Western blotting and ELISA. The inhibitory effect of fluvastatin was overcome by the simultaneous addition of exogenous mevalonate (100 micromol/L), a precursor of isoprenoids. Fluvastatins effect was fully reversible, and the drug did not cause any cellular toxicity. The statin did not block directly the in vitro activation of the secreted protease. Similar data were obtained with simvastatin. Altogether, our data indicate an inhibition of MMP-9 secretion by the drug. This effect is mediated by the inhibition of synthesis of mevalonate, a precursor of numerous derivatives essential for several cellular functions.


Atherosclerosis | 1997

Direct vascular effects of HMG-CoA reductase inhibitors

Stefano Bellosta; Franco Bernini; Nicola Ferri; P. Quarato; Monica Canavesi; Lorenzo Arnaboldi; Remo Fumagalli; Rodolfo Paoletti; Alberto Corsini

Several studies have demonstrated that any beneficial effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) on coronary events are linked to their hypocholesterolemic properties. However, since mevalonic acid (MVA), the product of the enzyme reaction, is the precursor of numerous metabolites, inhibition of HMG-CoA reductase has the potential to result in pleiotropic effects. MVA and other intermediates of cholesterol synthesis (isoprenoids) are necessary for cell proliferation and other important cell functions, hence effects other than cholesterol reduction may help to explain the antiatherosclerotic properties of statins. Recently, we provided in vitro evidence that fluvastatin, simvastatin, lovastatin, cerivastatin, but not pravastatin, dose-dependently decrease smooth muscle cells (SMC) migration and proliferation, independently of their ability to reduce plasma cholesterol. Moreover, statins are able to reduce the in vitro cholesterol accumulation in macrophages, by blocking cholesterol esterification and endocytosis of modified lipoproteins. This in vitro inhibition was completely prevented by the addition of mevalonate and partially by all-trans farnesol and all-trans geranylgeraniol, confirming the specific role of isoprenoid metabolites--probably through a prenylated protein(s)--in regulating these cellular events. The inhibitory effect of lipophilic statins on SMC proliferation has been recently shown in different models of proliferating cells such as cultured arterial myocytes and rapidly proliferating carotid and femoral intimal lesions in rabbits. Finally, ex vivo studies recently showed that sera from fluvastatin-treated patients interfere with smooth muscle cell proliferation. These results suggest that HMG-CoA reductase inhibitors exert a direct antiatherosclerotic effect in the arterial wall, beyond their effects on plasma lipids, that could translate into a more significant prevention of cardiovascular disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Increased Cholesterol Efflux Potential of Sera From ApoA-IMilano Carriers and Transgenic Mice

Guido Franceschini; Laura Calabresi; Giulia Chiesa; Cinzia Parolini; Cesare R. Sirtori; Monica Canavesi; F. Bernini

The ability of HDL to remove cholesterol from peripheral cells and drive it to the liver for excretion is believed to explain most of the strong inverse correlation between plasma HDL cholesterol levels and coronary heart disease. Carriers of the ApoA-IMilano (A-IM) mutant have a severe hypoalphalipoproteinemia but are not at increased risk for premature of coronary heart disease. To explain this apparent paradox, we compared the capacity of serum from A-IM and control subjects to extract cholesterol from Fu5AH cells. Because the A-IM carriers are all heterozygotes for the mutation, we also compared the cholesterol efflux capacity of serum from transgenic mice expressing A-IM or wild-type ApoA-I (A-IWT), in the absence of murine ApoA-I. In the whole series of human or mouse sera, cholesterol efflux was significantly correlated with several HDL-related parameters; after adjustment for concomitant variables, the only parameter that remained significantly correlated with cholesterol efflux was the serum ApoA-I concentration (r2=0.85 in humans and 0.84 in mice). The same was true when samples from control subjects, A-IM carriers, A-IWT or A-IM mice were analyzed separately. Cholesterol efflux to sera from the A-IM carriers was only reduced slightly compared with control sera (25.0+/-4.2% versus 30.4+/-3.3%), although there was a large reduction (-45%) in the serum ApoA-I concentration in the former. Cholesterol efflux was also lower to sera from A-IM than A-IWT mice (15.6+/-3.8% versus 30. 1+/-7.1%), but less than expected from the 70% reduction in serum ApoA-I concentration. A relative efflux potential of serum was calculated in each group as the slope of the regression line fitting cholesterol efflux to ApoA-I concentrations. Therefore, the relative efflux potential reflects the relative efficiency of ApoA-I in determining cell cholesterol efflux. The relative efflux potential of mouse and human sera was in the following order: A-IM mice>A-IM carriers>A-IWT mice=control subjects, suggesting a gene-dosage effect of the A-IM mutation on the efficiency of serum to extract cholesterol from cells. The high efficiency of A-IM-containing HDL for cell cholesterol uptake would result in an improved reverse cholesterol transport in the A-IM carriers, possibly explaining the low susceptibility to atherosclerosis development.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Human Apolipoproteins A-I and A-II in Cell Cholesterol Efflux Studies With Transgenic Mice

Giulia Chiesa; Cinzia Parolini; Monica Canavesi; Nicoletta Colombo; Cesare R. Sirtori; Remo Fumagalli; Guido Franceschini; F. Bernini

The first step in reverse cholesterol transport is the movement of cholesterol out of cells onto lipoprotein acceptors in the interstitial fluid. The contribution of specific lipoprotein components to this process remains to be established. In this study, the role of human apolipoproteins (apo) A-I and A-II in the efflux of cellular cholesterol was investigated in transgenic mouse models in which the expression of murine apoA-I was abolished due to gene targeting (A-IKO). Serum from A-IKO mice and from mice expressing human apoA-I and/or human apoA-II was incubated with [3H]cholesterol-labeled Fu5AH rat hepatoma cells for 4 hours at 37 degrees C. The cholesterol efflux to the serum of A-IKO mice was markedly lower than that to the serum of mice transgenic for human apoA-I (5.0 +/- 1.5% versus 25.0 +/- 4.0%). Expression of human apoA-II alone did not modify the cholesterol efflux capacity of A-IKO mouse serum. Cholesterol efflux to serum of mice expressing human apoA-II together with human apoA-I was significantly lower than that to human apoA-I mouse serum (20.0 +/- 2.3% versus 25.0 +/- 4.0%). Regression analysis of cholesterol efflux versus the lipid/apolipoprotein concentrations of mouse serum suggested that 3 independent factors contribute to determine the cholesterol efflux potential of serum: the apolipoprotein composition of HDL, the serum concentration of HDL phospholipids, and the presence of a small fraction of particles containing apoA-I.


Journal of Pharmacology and Experimental Therapeutics | 2009

Everolimus Inhibits Monocyte/Macrophage Migration in Vitro and Their Accumulation in Carotid Lesions of Cholesterol-Fed Rabbits

Roberta Baetta; Agnese Granata; Monica Canavesi; Nicola Ferri; Lorenzo Arnaboldi; Stefano Bellosta; Pascal Pfister; Alberto Corsini

Monocytes/macrophages recruited into the arterial wall during atherogenesis are crucial in the initiation and progression of atherosclerosis and play a fundamental role in the destabilization process that is the main causal event of acute coronary syndromes. In the present study, we investigated the effect of the mammalian target of rapamycin inhibitor everolimus on macrophage accumulation within carotid lesions elicited by perivascular collar placement in cholesterol-fed rabbits. Everolimus (1.5 mg/kg given 1 day before collaring followed by 1 mg/kg/day for 14 days, administered by oral gavage) markedly decreased lesion macrophage content as compared with vehicle control (-65%; p < 0.01). This effect was associated with a reduction in intimal thickening and occurred in the absence of changes in plasma cholesterol concentrations. To gain insights on the potential mechanism(s) underlying this effect, we investigated the influence of everolimus on chemoattractant-induced migration of human monocytes in vitro. Pretreatment with therapeutic concentrations of everolimus (10 nM) significantly lowered monocyte chemotaxis in response to various chemotactic factors (i.e., monocyte chemoattractant protein-1/CCL2, fractalkine/CX3CL1, interleukin-8/CXCL8, complement fragment 5a, or N-formyl-Met-Leu-Phe) without inducing monocyte cell death. These results suggest that everolimus may favorably influence the atherosclerotic process by affecting the recruitment of monocytes into early lesions.


Tetrahedron | 2001

Total synthesis of a pepstatin analog incorporating two trifluoromethyl hydroxymethylene isosteres (Tfm-GABOB) and evaluation of Tfm-GABOB containing peptides as inhibitors of HIV-1 protease and MMP-9

Cristina Pesenti; Alberto Arnone; Stefano Bellosta; Pierfrancesco Bravo; Monica Canavesi; Eleonora Corradi; Massimo Frigerio; Stefano Valdo Meille; Mara Monetti; Walter Panzeri; Fiorenza Viani; Romina Venturini; Matteo Zanda

Abstract We describe the asymmetric total synthesis of a trifluoromethyl (Tfm) analogue of the aspartate protease inhibitor pepstatin incorporating two γ-Tfm-γ-amino-β-hydroxybutyric acid (γ-Tfm-GABOB) units instead of the natural statine units. The title compound as well as several Tfm-substituted precursors were tested as inhibitors of HIV-1 protease and Gelatinase B (MMP-9)


Thrombosis and Haemostasis | 2005

Dietary polyphenols and regulation of gelatinase expression and activity

Monica Canavesi; G.V. Galli; Stefano Bellosta

The interaction of cells with the extracellular matrix (ECM) is critical for the normal development and function of organisms. The matrix metalloproteinases (MMPs) are a family of Zn(++) and Ca(++) dependent endopeptidases, which are key mediators of ECM remodelling. The turnover and remodelling of ECM must be tightly regulated, since uncontrolled proteolysis would contribute to abnormal development and to the generation of many pathological conditions characterized by either excessive degradation, or lack of degradation of ECM components. In particular, the gelatinases (MMP-2 and -9) are abundantly expressed in various malignant tumors, play an active role in angiogenesis, and may also influence the process of atherosclerotic lesion formation. In recent years, much consideration has been given to the role of diet in preventing degenerative diseases, such as cancer and cardiovascular diseases. Polyphenols are abundant components/micronutrients of the human diet that have been shown in vitro to profoundly affect ECM turnover by regulating gelatinases expression and activity, acting at both the pre- and post-transcriptional level. Therefore, they could have a beneficial effect in many pathological conditions implicated in connective tissue destruction and remodelling associated with degenerative diseases.


Journal of Cardiovascular Pharmacology | 2004

In vitro inhibitory effect of lercanidipine on cholesterol accumulation and matrix metalloproteinases secretion by macrophages.

Monica Canavesi; Novella Baldini; Amedeo Leonardi; Giorgio Sironi; Stefano Bellosta; Franco Bernini

Plaque rupture and thromboembolism play a major role in atherosclerotic acute syndrome. Experimental studies have demonstrated the potential direct anti-atherosclerotic effects of calcium antagonists. We investigated the in vitro effect of lercanidipine (REC 15/2375), a third-generation, highly lipophilic calcium antagonist on cholesterol metabolism and matrix metalloproteinases secretion in macrophages, two functions that predispose plaques to rupture. Lercanidipine (10−6–10−5 M) inhibited cholesterol esterification in macrophages and reduced cellular free and esterified cholesterol accumulation from acetylated LDL (63%, 62% of control P < 0.05, respectively). In addition, lercanidipine inhibited the release of metalloproteinases in the extracellular medium (50% and 95% inhibition at 10−5 M for MMP-9 and MMP-2, respectively). Experiments performed with lercanidipine enantiomers or other dihydropyridine derivatives, endowed with different lipophilicity and affinity for calcium channels, indicated that the above effects could be related to the lipophilic, but not to the calcium channel blocking properties of these molecules. When cells, after exposure to the drug, were allowed to equilibrate, lercanidipine inhibitory action could be observed at initial concentrations as low as 10−9 M, which is the actual concentration range observed in plasma in clinical settings. In conclusion, our data indicate that lercanidipine may exert potent anti-atherosclerotic effects by inhibiting macrophage functions involved in plaque stability.


British Journal of Pharmacology | 1997

Effect of lacidipine on cholesterol esterification: in vivo and in vitro studies

Franco Bernini; Monica Canavesi; E. Bernardini; N. Scurati; Stefano Bellosta; R. Fumagalli

1 Cholesterol esterification and accumulation in the arterial wall is a hallmark of atherogenesis. Several preclinical studies suggest that calcium antagonists may exert antiatherosclerotic activity by directly affecting atherogenesis in the arterial wall. We investigated the effect of the second generation dihydropyridine calcium antagonist lacidipine on cholesterol metabolism in vivo in the aortic arch of cholesterol fed rabbits, and in vitro in mouse cultured peritoneal macrophages. 2 Treatment of cholesterol‐fed rabbits with 1, 3 and 10 mg kg−1 day−1 of lacidipine for two months reduced, in a dose‐dependent manner, cholesterol esterification in the aortic arch: 24±6, 30±12, and 41±8% inhibition, respectively (P<0.001 vs HC control). Concomitantly, drug treatment reduced total cholesterol content of the vessel wall. Lacidipine 3 and 10 mg kg−1 day−1 reduced cholesterolaemia (∼20%); no effect was observed at the lowest dose used (1 mg kg−1 day−1). These results suggest that the action of lacidipine on cholesterol esterification in the arterial wall involves, at least in part, a direct effect on cellular cholesterol metabolism. Inhibition of cholesterol esterification in the arterial wall was observed also in a reference group of animals treated with the specific ACAT inhibitor CI‐976. 3 To evaluate the action of lacidipine on intracellular cholesterol metabolism we performed in vitro experiments with murine macrophages, the main cell type that accumulates cholesterol in the arterial wall. Lacidipine almost completely inhibited cholesterol esterification in cholesterol loaded macrophages in culture. The effect was observed independently of esterification stimuli and in cell free homogenates. The drug modified intracellular cholesterol distribution, doubling the free‐ to esterified sterol ratio, but did not influence the cellular rate of cholesteryl ester hydrolysis in the cell. All together these results indicate an inhibitory effect of lacidipine on cholesterol esterification catalyzed by the enzyme ACAT in murine macrophages. 4 We concluded that lacidipine influences cellular cholesterol metabolism. This effect may contribute to the potential antiatherosclerotic activity of this drug.


European Journal of Organic Chemistry | 2002

Solution/solid-phase synthesis of partially modified retro- and retro-inverso-ψ[NHCH(CF3)]-peptidyl hydroxamates and their evaluation as MMP-9 inhibitors

Alessandro Volonterio; Stefano Bellosta; Pierfrancesco Bravo; Monica Canavesi; Eleonora Corradi; Stefano Valdo Meille; Mara Monetti; Nathalie Moussier; Matteo Zanda

The synthesis of a novel family of partially modified (PM) retro- and retro-inverso-peptidyl hydroxamates, each incorporating a [CH(CF3)CH2CO] unit as a surrogate for the conventional malonyl group, has been accomplished both in solution and in solid phase. The key step is the Michael-type N-addition of free or polymer-bound α-amino hydroxamates to 3-[(E)-enoyl]-1,3-oxazolidin-2-ones, which takes place in high yields, although with low stereocontrol. This method is suitable for the preparation of combinatorial libraries of PM retro-ψ[NHCH(CF3)]-peptidyl hydroxamates for screening as metalloprotease inhibitors. A number of tri- and tetrapeptidyl hydroxamates were indeed obtained either in diastereomerically pure form by solution-phase synthesis followed by chromatographic purification, or as mixtures of two epimers by solid-phase synthesis and release from the resin. X-ray diffraction of a Tfm-retropeptidyl hydroxamate showed an interesting turn-like conformation with an intramolecularly hydrogen-bonded nine-membered ring, and a nearly planar geometry of the NH group bound to the CH(CF3) group. Three retro-peptidyl hydroxamates were submitted to bioassays, and displayed the capacity to reduce MMP-9 (Gelatinase B) gelatinolytic activity.

Collaboration


Dive into the Monica Canavesi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge