Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Bellosta is active.

Publication


Featured researches published by Stefano Bellosta.


Pharmacology & Therapeutics | 1999

New insights into the pharmacodynamic and pharmacokinetic properties of statins

Alberto Corsini; Stefano Bellosta; Roberta Baetta; Remo Fumagalli; Rodolfo Paoletti; Franco Bernini

The beneficial effects of statins are assumed to result from their ability to reduce cholesterol biosynthesis. However, because mevalonic acid is the precursor not only of cholesterol, but also of many nonsteroidal isoprenoid compounds, inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase may result in pleiotropic effects. It has been shown that several statins decrease smooth muscle cell migration and proliferation and that sera from fluvastatin-treated patients interfere with its proliferation. Cholesterol accumulation in macrophages can be inhibited by different statins, while both fluvastatin and simvastatin inhibit secretion of metalloproteinases by human monocyte-derived macrophages. The antiatherosclerotic effects of statins may be achieved by modifying hypercholesterolemia and the arterial wall environment as well. Although statins rarely have severe adverse effects, interactions with other drugs deserve attention. Simvastatin, lovastatin, cerivastatin, and atorvastatin are biotransformed in the liver primarily by cytochrome P450-3A4, and are susceptible to drug interactions when co-administered with potential inhibitors of this enzyme. Indeed, pharmacokinetic interactions (e.g., increased bioavailability), myositis, and rhabdomyolysis have been reported following concurrent use of simvastatin or lovastatin and cyclosporine A, mibefradil, or nefazodone. In contrast, fluvastatin (mainly metabolized by cytochrome P450-2C9) and pravastatin (eliminated by other metabolic routes) are less subject to this interaction. Nevertheless, a 5- to 23-fold increase in pravastatin bioavailability has been reported in the presence of cyclosporine A. In summary, statins may have direct effects on the arterial wall, which may contribute to their antiatherosclerotic actions. Furthermore, some statins may have lower adverse drug interaction potential than others, which is an important determinant of safety during long-term therapy.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

HMG-CoA Reductase Inhibitors Reduce MMP-9 Secretion by Macrophages

Stefano Bellosta; D. Via; Monica Canavesi; P. Pfister; R. Fumagalli; Rodolfo Paoletti; F. Bernini

-Macrophages secrete matrix metalloproteinases (MMPs) that may weaken the fibrous cap of atherosclerotic plaque, predisposing its fissuration. The 92-kDa gelatinase B (MMP-9) has been identified in abdominal aortic aneurysms and in atherosclerotic tissues. Fluvastatin, through the inhibition of the isoprenoid pathway, inhibits major processes of atherogenesis in experimental models (smooth muscle cell migration and proliferation and cholesterol accumulation in macrophages). We studied the effect of fluvastatin on the activity of MMP-9 in mouse and human macrophages in culture. Conditioned media of cells treated for 24 hours with fluvastatin were analyzed by gelatin zymography. In mouse macrophages, fluvastatin (5 to 100 micromol/L) significantly inhibited in a dose-dependent manner MMP-9 activity from 20% to 40% versus control. The drug, at a concentration as low as 5 micromol/L, inhibited MMP-9 activity ( approximately 30%) in human monocyte-derived macrophages as well. Phorbol esters (TPA, 50 ng/mL) stimulated MMP-9 activity by 50%, and fluvastatin inhibited this enhanced activity up to 50% in both mouse and human macrophages. The above results on the secretion of MMP-9 were confirmed by Western blotting and ELISA. The inhibitory effect of fluvastatin was overcome by the simultaneous addition of exogenous mevalonate (100 micromol/L), a precursor of isoprenoids. Fluvastatins effect was fully reversible, and the drug did not cause any cellular toxicity. The statin did not block directly the in vitro activation of the secreted protease. Similar data were obtained with simvastatin. Altogether, our data indicate an inhibition of MMP-9 secretion by the drug. This effect is mediated by the inhibition of synthesis of mevalonate, a precursor of numerous derivatives essential for several cellular functions.


Circulation | 2004

Safety of Statins Focus on Clinical Pharmacokinetics and Drug Interactions

Stefano Bellosta; Rodolfo Paoletti; Alberto Corsini

Statin monotherapy is generally well tolerated, with a low frequency of adverse events. The most important adverse effects associated with statins are myopathy and an asymptomatic increase in hepatic transaminases, both of which occur infrequently. Because statins are prescribed on a long-term basis, however, possible interactions with other drugs deserve particular attention, as many patients will typically receive pharmacological therapy for concomitant conditions during the course of statin treatment. This review summarizes the pharmacokinetic properties of statins and emphasizes their clinically relevant drug interactions.


Journal of Biological Chemistry | 1995

Stable Expression and Secretion of Apolipoproteins E3 and E4 in Mouse Neuroblastoma Cells Produces Differential Effects on Neurite Outgrowth

Stefano Bellosta; Britto P. Nathan; Matthias Orth; Li-Ming Dong; Robert W. Mahley; Robert E. Pitas

Previously, we demonstrated in cultured dorsal root ganglion neurons that, in the presence of β-migrating very low density lipoproteins (β-VLDL), apolipoprotein (apo) E4, but not apoE3, suppresses neurite outgrowth. In the current studies, murine neuroblastoma cells (Neuro-2a) were stably transfected with human apoE3 or apoE4 cDNA, and the effect on neurite outgrowth was examined. The stably transfected cells secreted nanogram quantities of apoE (44-89 ng/mg of cell protein in 48 h). In the absence of lipoproteins, neurite outgrowth was similar in the apoE3- and apoE4-secreting cells. The apoE4-secreting cells, when incubated with β-VLDL, VLDL, cerebrospinal fluid lipoproteins (d < 1.21 g/ml), or with triglyceride/phospholipid (2.7:1 (w/w)) emulsions, showed a reduction in the number of neurites/cell, a decrease in neurite branching, and an inhibition of neurite extension, whereas in the apoE3-secreting cells in the presence of a lipid source, neurite extension was increased. Uptake of β-VLDL occurred to a similar extent in both the apoE3- and apoE4-secreting cells. With low density lipoproteins or with dimyristoylphosphatidylcholine emulsions, either alone or complexed with cholesterol, no differential effect on neurite outgrowth was observed. A slight differential effect was observed with apoE-containing high density lipoproteins. The differential effect of apoE3 and apoE4 in the presence of β-VLDL was blocked by incubation of the cells with heparinase and chlorate, with lactoferrin, or with receptor-associated protein, all of which prevent the uptake of lipoproteins by the low density lipoprotein receptor-related protein (LRP). The data suggest that the secreted and/or cell surface-bound apoE interact with the lipoproteins and facilitate their internalization via the heparan sulfate proteoglycan-LRP pathway. The mechanism by which apoE3 and apoE4 exert differential effects on neurite outgrowth remains speculative. However, the data suggest that apoE4, which has been shown to be associated with late onset familial and sporadic Alzheimers disease, may inhibit neuronal remodeling and contribute to the progression of the disease.


Annals of Medicine | 2000

Non-lipid-related effects of statins

Stefano Bellosta; Nicola Ferri; Franco Bernini; Rodolfo Paoletti; Alberto Corsini

The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on coronary events have generally been attributed to their hypocholesterolaemic properties. However, as mevalonate and other intermediates of cholesterol synthesis (isoprenoids) are necessary for cell proliferation and other important cell functions, effects other than cholesterol reduction may explain the pharmacological properties of statins. In the present review, we discuss the current knowledge on the non-lipid-related effects of statins, with a special emphasis on their potential benefits in different diseases, such as atherosclerosis and cancer. The mechanism(s) responsible for their favourable properties are also reviewed.


Journal of Clinical Investigation | 1995

Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice.

Stefano Bellosta; Robert W. Mahley; David A. Sanan; J Murata; D L Newland; John M. Taylor; Robert E. Pitas

apoE deficiency causes hyperlipidemia and premature atherosclerosis. To determine if macrophage-specific expression of apoE would decrease the extent of atherosclerosis, we expressed human apoE in macrophages of apoE-null mice (apoE-/-) and assessed the effect on lipid accumulation in cells of the arterial wall. Macrophage-specific expression of human apoE in normal mice was obtained by use of the visna virus LTR. These animals were bred with apoE-/- mice to produce animals hemizygous for expression of human apoE in macrophages in the absence of murine apoE (apoE-/-,hTgE+/0). Low levels of human apoE mRNA were present in liver and spleen and high levels in lung and peritoneal macrophages. Human apoE was secreted by peritoneal macrophages and was detected in Kupffer cells of the liver. Human apoE in the plasma of apoE-/-,hTgE+/0 mice (n = 30) was inversely correlated (P < 0.005) with the plasma cholesterol concentration. After 15 wk on a normal chow diet, atherosclerosis was assessed in apoE-/-,hTgE+/0 animals and in apoE-/-,hTgE0/0 littermates matched for plasma cholesterol level (approximately 450 mg/dl) and lipoprotein profile. There was significantly less atherosclerosis in both the aortic sinus and in the proximal aorta (P < 0.0001) in the animals expressing the human apoE transgene. In apo-E-/-,hTgE+/0 animals, which had detectable atherosclerotic lesions, human apoE was detected in the secretory apparatus of macrophage-derived foam cells in the arterial wall. The data demonstrate that expression of apoE by macrophages is antiatherogenic even in the presence of high levels of atherogenic lipoproteins. The data suggest that apoE prevents atherosclerosis by promoting cholesterol efflux from cells of the arterial wall.


Atherosclerosis | 1997

Direct vascular effects of HMG-CoA reductase inhibitors

Stefano Bellosta; Franco Bernini; Nicola Ferri; P. Quarato; Monica Canavesi; Lorenzo Arnaboldi; Remo Fumagalli; Rodolfo Paoletti; Alberto Corsini

Several studies have demonstrated that any beneficial effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) on coronary events are linked to their hypocholesterolemic properties. However, since mevalonic acid (MVA), the product of the enzyme reaction, is the precursor of numerous metabolites, inhibition of HMG-CoA reductase has the potential to result in pleiotropic effects. MVA and other intermediates of cholesterol synthesis (isoprenoids) are necessary for cell proliferation and other important cell functions, hence effects other than cholesterol reduction may help to explain the antiatherosclerotic properties of statins. Recently, we provided in vitro evidence that fluvastatin, simvastatin, lovastatin, cerivastatin, but not pravastatin, dose-dependently decrease smooth muscle cells (SMC) migration and proliferation, independently of their ability to reduce plasma cholesterol. Moreover, statins are able to reduce the in vitro cholesterol accumulation in macrophages, by blocking cholesterol esterification and endocytosis of modified lipoproteins. This in vitro inhibition was completely prevented by the addition of mevalonate and partially by all-trans farnesol and all-trans geranylgeraniol, confirming the specific role of isoprenoid metabolites--probably through a prenylated protein(s)--in regulating these cellular events. The inhibitory effect of lipophilic statins on SMC proliferation has been recently shown in different models of proliferating cells such as cultured arterial myocytes and rapidly proliferating carotid and femoral intimal lesions in rabbits. Finally, ex vivo studies recently showed that sera from fluvastatin-treated patients interfere with smooth muscle cell proliferation. These results suggest that HMG-CoA reductase inhibitors exert a direct antiatherosclerotic effect in the arterial wall, beyond their effects on plasma lipids, that could translate into a more significant prevention of cardiovascular disease.


Life Sciences | 1998

Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages

Francesco Visioli; Stefano Bellosta; Claudio Galli

The Mediterranean diet, rich in fresh fruits and vegetables, has been associated with a lower incidence of cardiovascular disease and cancer, partly because of its high proportion of bioactive compounds such as vitamins, flavonoids and polyphenols. The major lipid component of such diet is the drupe-derived olive oil, that can be distinguished from other seed oils for the peculiar composition of its non-triglyceride fraction. In fact, several minor components, including polyphenols, grant the oil its particular taste and aroma. Oleuropein, the most abundant among these components, has been shown to be a potent antioxidant endowed with antiinflammatory properties. We investigated the effects of oleuropein on NO release in cell culture and its activity toward nitric oxide synthase (iNOS) expression. The results show that oleuropein dose-dependently enhance nitrite production in LPS-challenged mouse macrophages. This effect was blocked by the iNOS inhibitor L-NAME, indicating increased iNOS activity. Also, Western blot analysis of cell homogenates show that oleuropein increases iNOS expression in such cells. Taken together, our data suggest that, during endotoxin challenge, oleuropein potentiates the macrophage-mediated response, resulting in higher NO production, currently believed to be beneficial for cellular and organismal protection.


Journal of Clinical Investigation | 2005

PPARα inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a

Florence Gizard; Carole Amant; Olivier Barbier; Stefano Bellosta; Romain Robillard; Frédéric Percevault; Henry Sevestre; Paul Krimpenfort; Alberto Corsini; Jacques Rochette; Corine Glineur; Jean Charles Fruchart; Gérard Torpier; Bart Staels

Vascular SMC proliferation is a crucial event in occlusive cardiovascular diseases. PPARalpha is a nuclear receptor controlling lipid metabolism and inflammation, but its role in the regulation of SMC growth remains to be established. Here, we show that PPARalpha controls SMC cell-cycle progression at the G1/S transition by targeting the cyclin-dependent kinase inhibitor and tumor suppressor p16(INK4a) (p16), resulting in an inhibition of retinoblastoma protein phosphorylation. PPARalpha activates p16 gene transcription by both binding to a canonical PPAR-response element and interacting with the transcription factor Sp1 at specific proximal Sp1-binding sites of the p16 promoter. In a carotid arterial-injury mouse model, p16 deficiency results in an enhanced SMC proliferation underlying intimal hyperplasia. Moreover, PPARalpha activation inhibits SMC growth in vivo, and this effect requires p16 expression. These results identify an unexpected role for p16 in SMC cell-cycle control and demonstrate that PPARalpha inhibits SMC proliferation through p16. Thus, the PPARalpha/p16 pathway may be a potential pharmacological target for the prevention of cardiovascular occlusive complications of atherosclerosis.


Cholesterol | 2012

Cholesterol: its regulation and role in central nervous system disorders.

Matthias Orth; Stefano Bellosta

Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimers disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

Collaboration


Dive into the Stefano Bellosta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge