Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Morales-Masis is active.

Publication


Featured researches published by Monica Morales-Masis.


Journal of Applied Physics | 2012

Observing “quantized” conductance steps in silver sulfide: Two parallel resistive switching mechanisms

Jelmer J. T. Wagenaar; Monica Morales-Masis; Jan M. van Ruitenbeek

We demonstrate that it is possible to distinguish two conductance switching mechanisms in silver sulfide devices at room temperature. Experiments were performed using a Ag2S thin film deposited on a wide Ag bottom electrode, which was contacted by the Pt tip of a scanning tunneling microscope. By applying a positive voltage on the silver electrode, the conductance is seen to switch to a state having three orders of magnitude higher conductance, which is related to the formation of a conductive path inside the Ag2S thin film. We argue this to be composed of a metallic silver nanowire accompanied by a modification of the surrounding lattice structure. Metallic silver nanowires decaying after applying a negative voltage allow observing conductance steps in the breaking traces characteristic for atomic-scale contacts, while the lattice structure deformation is revealed by gradual and continuously decreasing conductance traces.


ACS Applied Materials & Interfaces | 2016

Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells

Jérémie Werner; Jonas Geissbühler; Ali Dabirian; Sylvain Nicolay; Monica Morales-Masis; Stefaan De Wolf; Bjoern Niesen; Christophe Ballif

Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.


APL Materials | 2014

Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

Monica Morales-Masis; Laura Ding; Fabien Dauzou; Quentin Jeangros; Aïcha Hessler-Wyser; Sylvain Nicolay; Christophe Ballif

Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2)-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.


Applied Physics Letters | 2016

Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

Jérémie Werner; Arnaud Walter; Esteban Rucavado; Soo-Jin Moon; Davide Sacchetto; Michael Rienaecker; Robby Peibst; Rolf Brendel; X. Niquille; Stefaan De Wolf; Philipp Löper; Monica Morales-Masis; Sylvain Nicolay; Bjoern Niesen; Christophe Ballif

Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells.


IEEE Transactions on Antennas and Propagation | 2014

Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

Philippe Dreyer; Monica Morales-Masis; Sylvain Nicolay; Christophe Ballif; Julien Perruisseau-Carrier

This work addresses the task of integrating reflectarray antennas on thin-film solar cell panels, as a means to save real estate, weight or cost of platforms, such as satellites or transportable autonomous antenna systems. Reflectarray unit cell families, having large phase range, high optical transparency and low microwave loss, are designed to preserve their efficiency in terms of solar cell and reflectarray antenna efficiency. Because there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, both standard copper and transparent conductors were considered here. The results obtained at the unit cell level demonstrate, for the first time, the feasibility of integrating reflectarray on a thin-film solar cell, preserving good performance in terms of both solar cell and reflectarray efficiency. For instance, using copper, measurement at X-band demonstrates a phase range larger than 270 ° with an average microwave loss of 0.25 dB and average optical transparency in the visible spectrum of 85%. Using transparent conductor contributes to better average transparency (90%) at the cost of increase in microwave loss (2.45 dB).


APL Materials | 2015

Environmental stability of high-mobility indium-oxide based transparent electrodes

Thanaporn Tohsophon; Ali Dabirian; Stefaan De Wolf; Monica Morales-Masis; Christophe Ballif

Large-scale deployment of a wide range of optoelectronic devices, including solar cells, critically depends on the long-term stability of their front electrodes. Here, we investigate the performance of Sn-doped In2O3 (ITO), H-doped In2O3 (IO:H), and Zn-doped In2O3 (IZO) electrodes under damp heat (DH) conditions (85 °C, 85% relative humidity). ITO, IO:H capped with ITO, and IZO show high stability with only 3%, 9%, and 13% sheet resistance (Rs) degradation after 1000 h of DH, respectively. For uncapped IO:H, we find a 75% Rs degradation, due to losses in electron Hall mobility (μHall). We propose that this degradation results from chemisorbed OH- or H2O-related species in the film, which is confirmed by thermal desorption spectroscopy and x-ray photoelectron spectroscopy. While μHall strongly degrades during DH, the optical mobility (μoptical) remains unchanged, indicating that the degradation mainly occurs at grain boundaries.


Materials Research Express | 2015

Tuning the porosity of zinc oxide electrodes: from dense to nanopillar films

Lorenzo Fanni; Benoît Delaup; Bjoern Niesen; Yonat Milstein; Dubi Shachal; Monica Morales-Masis; Sylvain Nicolay; Christophe Ballif

Thin films with tunable porosity are of high interest in applications such as gas sensing and antireflective coatings. We report a facile and scalable method to fabricate ZnO electrodes with tuneable porosity. By adjusting the substrate temperature and ratio of precursor gasses during low-pressure chemical vapor deposition we can accurately tune the porosity of ZnO films, from 0 up to 24%. The porosity change of the films from dense layer to separated nanopillars results in an effective refractive index reduction from 1.9 to 1.65 at 550 nm, as determined by optical and x-ray spectroscopy. The low-refractive-index ZnO films are incorporated into amorphous silicon solar cells demonstrating reflection losses reduction down to 4% in the visible wavelengths range.


Journal of Vacuum Science and Technology | 2018

Amorphous gallium oxide grown by low-temperature PECVD

Eiji Kobayashi; Mathieu Boccard; Quentin Jeangros; Nathan Rodkey; Daniel Vresilovic; Aïcha Hessler-Wyser; Max Döbeli; Daniel Franta; Stefaan De Wolf; Monica Morales-Masis; Christophe Ballif

Owing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaOx:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5–4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H2, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.


Journal of Physical Chemistry C | 2018

New Route for “Cold-Passivation” of Defects in Tin-Based Oxides

Esteban Rucavado; Miglė Graužinytė; José A. Flores-Livas; Quentin Jeangros; Federica Landucci; Yeonbae Lee; Takashi Koida; Stefan Goedecker; Aïcha Hessler-Wyser; Christophe Ballif; Monica Morales-Masis

Transparent conductive oxides (TCOs) are essential in technologies coupling light and electricity. For Sn-based TCOs, oxygen deficiencies and undercoordinated Sn atoms result in an extended density of states below the conduction band edge. Although shallow states provide free carriers necessary for electrical conductivity, deeper states inside the band gap are detrimental to transparency. In zinc tin oxide (ZTO), the overall optoelectronic properties can be improved by defect passivation via annealing at high temperatures. Yet, the high thermal budget associated with such treatment is incompatible with many applications. Here, we demonstrate an alternative, low-temperature passivation method, which relies on cosputtering Sn-based TCOs with silicon dioxide (SiO2). Using amorphous ZTO and amorphous/polycrystalline tin dioxide (SnO2) as representative cases, we demonstrate through optoelectronic characterization and density functional theory simulations that the SiO2 contribution is twofold. First, oxygen from SiO2 passivates the oxygen deficiencies that form deep defects in SnO2 and ZTO. Second, the ionization energy of the remaining deep defect centers is lowered by the presence of silicon atoms. Remarkably, we find that these ionized states do not contribute to sub-gap absorptance. This simple passivation scheme significantly improves the optical properties without affecting the electrical conductivity, hence overcoming the known transparency–conductivity trade-off in Sn-based TCOs.


Journal of Applied Physics | 2018

Carrier scattering mechanisms limiting mobility in hydrogen-doped indium oxide

Sebastian Husein; Michael Stuckelberger; Bradley West; Laura Ding; Fabien Dauzou; Monica Morales-Masis; Martial Duchamp; Zachary C. Holman; Mariana I. Bertoni

Hydrogen-doped indium oxide (IO:H) has recently garnered attention as a high-performance transparent conducting oxide (TCO) and has been incorporated into a wide array of photovoltaic devices due to its high electron mobility (>100 cm2/V s) and transparency (>90% in the visible range). Here, we demonstrate IO:H thin-films deposited by sputtering with mobilities in the wide range of 10–100 cm2/V s and carrier densities of 4 × 1018 cm–3–4.5 × 1020 cm–3 with a large range of hydrogen incorporation. We use the temperature-dependent Hall mobility from 5 to 300 K to determine the limiting electron scattering mechanisms for each film and identify the temperature ranges over which these remain significant. We find that at high hydrogen concentrations, the grain size is reduced, causing the onset of grain boundary scattering. At lower hydrogen concentrations, a combination of ionized impurity and polar optical phonon scattering limits mobility. We find that the influence of ionized impurity scattering is reduced with the increasing hydrogen content, allowing a maximization of mobility >100 cm2/V s at moderate hydrogen incorporation amounts prior to the onset of grain boundary scattering. By investigating the parameter space of the hydrogen content, temperature, and grain size, we define the three distinct regions in which the grain boundary, ionized impurity, and polar optical phonon scattering operate in this high mobility TCO.Hydrogen-doped indium oxide (IO:H) has recently garnered attention as a high-performance transparent conducting oxide (TCO) and has been incorporated into a wide array of photovoltaic devices due to its high electron mobility (>100 cm2/V s) and transparency (>90% in the visible range). Here, we demonstrate IO:H thin-films deposited by sputtering with mobilities in the wide range of 10–100 cm2/V s and carrier densities of 4 × 1018 cm–3–4.5 × 1020 cm–3 with a large range of hydrogen incorporation. We use the temperature-dependent Hall mobility from 5 to 300 K to determine the limiting electron scattering mechanisms for each film and identify the temperature ranges over which these remain significant. We find that at high hydrogen concentrations, the grain size is reduced, causing the onset of grain boundary scattering. At lower hydrogen concentrations, a combination of ionized impurity and polar optical phonon scattering limits mobility. We find that the influence of ionized impurity scattering is reduced w...

Collaboration


Dive into the Monica Morales-Masis's collaboration.

Top Co-Authors

Avatar

Christophe Ballif

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Aïcha Hessler-Wyser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Esteban Rucavado

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Quentin Jeangros

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Stefaan De Wolf

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sylvain Nicolay

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Ali Dabirian

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Philipp Löper

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Bjoern Niesen

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Fabien Dauzou

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge