Morris Schnitzer
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morris Schnitzer.
Biology and Fertility of Soils | 1997
H.-R. Schulten; Morris Schnitzer
Abstract 1. From the data presented herein it is possible to deduce the following distribution of total N in humic substances and soils: proteinaceous materials (proteins, peptides, and amino acids) – ca. 40%; amino sugars – 5–6%; heterocyclic N compounds (including purines and pyrimidines) – ca. 35%; NH3–19%; approximately 1/4 of the NH3 is fixed NH4+. Thus, proteinaceous materials and heterocyclics appear to be major soil N components.2. Natural 15N abundance levels in soils and humic materials are so low that direct analysis by 15N NMR is very difficult or impossible. To overcome this difficulty, the soil or humic material is incubated with 15N-enriched fertilizer. Even incubation in the laboratory for up to 630 days does not produce the same types of 15N compounds that are formed in soils and humic materials over hundreds or thousands of years. For example, very few 15N-labelled heterocyclics are detected by 15N NMR. Does this mean that heterocyclics are not present? Or are the heterocyclics that are present not labelled under these experimental conditions and therefore not detected by the 15N NMR spectrometer ? Another possibility is that a large number of N heterocyclics occur in soils, but each type occurs in very low concentrations. Until the sensitivity is improved, 15N NMR will not provide results that can be compared with data obtained from the same soil and humic material samples by chemical methods and mass spectroscopy.3. What is most important with respect to agricultural is that all major N forms in soils are available to organisms and are sources of NH3 or NH4+ for plant roots and microbes. Naturally, some of the NH3 will enter the N cycle.4. From chemical and pyrolysis-mass spectrometric analyses it appears that N heterocylics are significant components of the SOM, rather than degradation products of other molecules due to pyrolysis. The arguments in favor of N heterocyclics as genuine SOM components are the following:a) Some N-heterocyclics originate from biological precursors of SOM, such as proteinaceous materials, carbohydrates, chlorophyll, nucleic acids, and alkaloids, which enter the soil system as plant residues or remains of animals.b) In aquatic humic substances and dissolved organic matter (DOM) at considerably lower pyrolysis temperatures (200 to 300°C), free and substituted N-heterocyclics such as pyrroles, pyrrolidines, pyridines, pyranes, and pyrazoles, have been identified by analytical pyrolysis (Schulten et al 1997b).c) Their presence in humic substances and soils was also detected without pyrolysis by gel chromatography – GC/MS after reductive acetylation (Schnitzer and Spiteller 1986), by X-ray photoelectron spectroscopy (Patience et al. 1992), and also by spectroscopic, chromatographic, chemical, and isotopic methods (Ikan et al. 1992).5. While we can see light at the end of the tunnel as far as soil-N is concerned, further research is needed to identify additional N-containing compounds such as N- heterocyclics, to determine whether these are present in the soil or humic materials in the form in which they were identified or whether they originate from more complex structures. If the latter is correct, then we need to isolate these complex N-molecules and attempt to identify them.
Nature Nanotechnology | 2010
Maria C. DeRosa; Carlos M. Monreal; Morris Schnitzer; Ryan Walsh; Yasir Sultan
To the Editor — Nitrogen, which is a key nutrient source for food, biomass, and fibre production in agriculture, is by far the most important element in fertilizers when judged in terms of the energy required for its synthesis, tonnage used and monetary value. However, compared with amounts of nitrogen applied to soil, the nitrogen use efficiency (NUE) by crops is very low. Between 50 and 70% of the nitrogen applied using conventional fertilizers — plant nutrient formulations with dimensions greater than 100 nm — is lost owing to leaching in the form of water soluble nitrates, emission of gaseous ammonia and nitrogen oxides, and long-term incorporation of mineral nitrogen into soil organic matter by soil microorganisms1. Numerous attempts to increase the NUE have so far met with little success, and the time may have come to apply nanotechnology to solve some of these problems. Carbon nanotubes were recently shown to penetrate tomato seeds2, and zinc oxide nanoparticles were shown to enter the root tissue of ryegrass3 (Fig. 1). This suggests that new nutrient delivery systems that exploit the nanoscale porous domains on plant surfaces can be developed. The potential use of nanotechnology to improve fertilizer formulations, however, may have been hindered by reduced research funding and the lack of clear regulations and innovation policies. Current patent literature shows that the use of nanotechnology in fertilizer development remains relatively low (about 100 patents and patent applications between 1998 and 2008) compared with pharmaceuticals (more than 6,000 patents and patent applications over the same period)4. A nanofertilizer refers to a product that delivers nutrients to crops in one of three ways. The nutrient can be encapsulated inside nanomaterials such as nanotubes or nanoporous materials, coated with a thin protective polymer film, or delivered as particles or emulsions of nanoscale dimensions. Owing to a high surface area to volume ratio, the effectiveness of nanofertilizers may surpass the most innovative polymer-coated conventional fertilizers, which have seen little improvement in the past ten years. Ideally, nanotechnology could provide devices and mechanisms to synchronize the release of nitrogen (from fertilizers) with its uptake by crops; the nanofertilizers should release the nutrients on-demand while preventing them from prematurely converting into chemical/gaseous forms that cannot be absorbed by plants. This can be achieved by preventing nutrients from interacting with soil, water and microorganisms, and releasing nutrients only when they can be directly internalized by the plant. Examples of these nanostrategies are beginning to emerge. Zinc–aluminiumlayered double-hydroxide nanocomposites have been used for the controlled release of chemical compounds that regulate plant growth5. Improved yields have been claimed for fertilizers that are incorporated into cochleate nanotubes (rolled-up lipid bilayer sheets)6. The release of nitrogen by urea hydrolysis has been controlled through the insertion of urease enzymes into nanoporous silica7. Although these approaches are promising, they lack mechanisms that can recognize and respond to the needs of the plant and changes in nitrogen levels in the soil. The development of functional nanoscale films8 and devices has the potential to produce significant gains in the NUE and crop production. In addition to increasing the NUE, nanotechnology might be able to improve the performance of fertilizers in other ways. For example, owing to its photocatalytic property, nanosize titanium dioxide has been incorporated into fertilizers as a bactericidal additive. Moreover, titanium dioxide may also lead to improved crop yield through the photoreduction of nitrogen gas9. Furthermore, nanosilica particles absorbed by roots have been shown to form films at the cell walls, which can enhance the plant’s resistance to stress and lead to improved yields10. Clearly, there is an opportunity for nanotechnology to have a profound impact on energy, the economy and the environment, by improving fertilizer products. New prospects for integrating nanotechnologies into fertilizers should be explored, cognizant of any potential risk to the environment or to human health. With targeted efforts by governments and academics in developing such enabled agriproducts, we believe that nanotechnology will be transformative in this field. ❐
Biology and Fertility of Soils | 1998
Théophile Paré; Henri Dinel; Morris Schnitzer; Stefano Dumontet
Abstract Composts produced from animal manures and shredded paper were characterized in terms of their carbon (C) and nitrogen (N) forms and C mineralization. Total, water-soluble, acid-hydrolyzable and non-hydrolyzable C and N contents were determined on composts sampled on days 0, 11, 18, 26, 33, 40 and 59 after composting was initiated. Water-soluble and acid-hydrolyzable C and N decreased during composting, whereas non-hydrolyzable C remained relatively constant, and non-hydrolyzable N greatly increased during composting. The water-soluble forms of N were characterized by a decrease of ammomium (NH4+-N) at the beginning of composting, followed by an increase of nitrate (NO3–-N) towards the end of composting. The mineralization of C in composted materials was generally higher at the beginning than at the end of composting, whereas no differences were observed for mineralization of C in non-hydrolyzable materials. The addition of N inhibited C mineralization in composts except in samples collected on days 40 and 59, while C mineralization was strongly stimulated by adding N to the non-hydrolyzable materials. The data suggest that the N forms in the non-hydrolyzable materials were chemically similar and not readily available to microbes, indicating that the C/N ratios often used to assess the biodegradability of organic matter and to develop compost formulations should be based on biologically available N and C and not on total N and C.
Biology and Fertility of Soils | 1997
B. C. Liang; A. F. Mackenzie; Morris Schnitzer; Carlos M. Monreal; P. R. Voroney; R. P. Beyaert
Abstract Soil samples taken from four experimental sites that had been cropped to continuous corn for 3–11 years in Ontario and Quebec were analyzed to evaluate changes in quantity and quality of labile soil organic carbon under different nitrogen (N) fertility and tillage treatments. Addition of fertilizer N above soil test recommendations tended to decrease amounts of water-soluble organic carbon (WSOC) and microbial biomass carbon (MBC). The quality of the WSOC was characterized by 13C nuclear magnetic resonance and infrared spectrophotometry and the results indicated that carbohydrates, long-chain aliphatics and proteins were the major components of all extracts. Similar types of C were present in all of the soils, but an influence of management was evident. The quantity of soil MBC was positively related to the quantities of WSOC, carbohydrate C, and organic C, and negatively related to quantities of long-chain aliphatic C in the soil. The quantity of WSOC was positively related to the quantities of protein C, carbohydrate C, and negatively related to the quantity of carboxylic C. The quantity of soil MBC was not only related to quantities of soil WSOC but also to the quality of soil WSOC.
Biology and Fertility of Soils | 1999
Théophile Paré; Henri Dinel; Morris Schnitzer
Abstractu2002Composts made from biosolids and municipal solid wastes contain heavy metals which may be exported outside soil systems by plants, animals and surface and subsurface waters after the compost has been added to soils. Chemical distributions of Cu, Zn, Cr, Pb, Ni and Co were determined by eight sequential extractions of co-composted materials sampled on days 0, 13, 27 and 41. The concentrations of residual Zn, Cr, Cu and Pb increased by 145, 124, 73.6 and 26.3% during the composting period, respectively, whereas the concentration of residual Ni remained relatively constant and that of Co decreased by 60% over the same period. These results show that co-composting contaminated residues substantially reduces the extractability and exchangeability of four out of six heavy metals, suggesting that the risks of entering the food chain and contaminating crops, animals and water reserves would be equally reduced. Fourier-transform infrared spectra showed that heavy metals in the compost are bonded to COO- groups of the organic matter.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2007
Morris Schnitzer; Carlos M. Monreal; Glenn A. Facey; Peter B. Fransham
Fast pyrolysis of chicken manure produced two biooils (Fractions I and II) and a residual char. All four materials were analyzed by chemical methods, 13C and 1H Nuclear Magnetic Resonance Spectrometry (13C and 1H NMR), and Fourier Transform Infrared Spectrosphotometry (FTIR). The char showed the highest C content and the highest aromaticity. Of the two biooils Fraction II was higher in C, yield and calorific value but lower in N than Fraction I. The S and ash content of the two biooil fractions were low. The Cross Polarization Magic Angle Spinning (CP-MAS) 13C NMR spectrum of the initial chicken manure showed it to be rich in cellulose, which was a major component of sawdust used as bedding material. Nuclear Magnetic Resonance (NMR) spectra of the two biooils indicated that Fraction I was less aromatic than Fraction II. Among the aromatics in the two biooils, we were able to tentatively identify N-heterocyclics like indoles, pyridines, and pyrazines. FTIR spectra were generally in agreement with the NMR data. FTIR spectra of both biooils showed the presence of both primary and secondary amides and primary amines as well as N-heterocyclics such as pyridines, quinolines, and pyrimidines. The FTIR spectrum of the char resembled that of the initial chicken manure except that the concentration of carbohydrates was lower.
Bioresource Technology | 2009
Dharani D. Das; Morris Schnitzer; Carlos M. Monreal; Paul M. Mayer
Our earlier investigations on the chemical composition of biooils derived by the fast pyrolysis of chicken manure revealed the presence of more than 500 compounds. In order to simplify this heterogeneous and complex chemical system, we produced four biooil fractions namely strongly acidic fraction A, weakly acidic fraction B, basic fraction C and neutral fraction D on the basis of their solubilities in aqueous solutions at different pHs. The yield (wt/wt.%) for fraction A was 3%, for fraction B 21.3%, for fraction C 2.4% and for fraction D 32.4%, respectively. The four fractions were analyzed by elemental analyses, Fourier Transform infrared spectrophotometry (FTIR), (1)H and (13)C nuclear magnetic spectroscopy (NMR), and electrospray ionization mass spectrometry (ESI-MS). The major components of the four fractions were saturated and unsaturated fatty acids, N-heterocyclics, phenols, sterols, diols and alkylbenzenes. The pH separation system produced fractions of enhanced chemical homogeneity.
Geoderma | 2003
T. Marche; Morris Schnitzer; Henri Dinel; Théophile Paré; Pascale Champagne; H.-R. Schulten; G. Facey
Abstract Recycling of paper mill sludge (PMS) by composting is becoming an acceptable practice for converting these chemically complex materials into useful soil amendments, while eliminating negative environmental impacts. The organic composition of a PMS–hardwood sawdust mixture was investigated during composting to better understand the changes in main chemical components. Pyrolysis-field ionization mass spectrometry (Py-FIMS) and cross polarization-magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) were employed to characterize the organic composition of the PMS composted materials. The spectroscopic data revealed that the major components of the PMS were lipids, sterols, lignin, N-compounds, and carbohydrates. By the end of composting (at biomaturity), concentrations of carbohydrates and lignin became more prominent, while those of lipids, sterols and proteinaceous components decreased. Increases in carbohydrates and decreases in paraffinic C, proteinaceous C and C in OCH3 groups appeared to be related to increased microbial activity. Other chemical changes observed during composting were increases in aromatic C, phenolic C, and in aromaticity. While the total C and N contents decreased by about only 12.0%, the compost lost 50% of its initial weight. At biomaturity, the compost consisted primarily of polysaccharide/carbohydrate materials, specifically cellulose and acidic polysaccharides (uronic acids) in combination with smaller quantities of lignin.
Advances in Agronomy | 1995
Morris Schnitzer; H.-R. Schulten
Publisher Summary This chapter describes and evaluates applications of mainly pyrolysis-field ionization mass spectrometry (Py-FIMS) to the analysis of soil organic matter (SOM) and of pyrolysis-gas chromatography /electron ionization mass spectrometry (Py-GC/MS) to structural studies on humic substances. The chapter presents fundamentals of pyrolysis-mass spectrometric methods. Mass spectrometry is one of the most expensive and sophisticated analytical techniques with respect to both the instrumental requirements and the skill and proficiency of the operating staff. In most agricultural soils, inorganic and organic soil constituents are so closely associated that it is necessary to separate the two before either can be examined in greater detail. This separation is usually achieved by extracting the SOM. The soil science literature contains a vast amount of information on the extraction of organic matter (OM) from soils by variety of reagents under widely differing experimental conditions. With recent developments in Py-FIMS, and its application to SOM and whole soils, it has become possible to investigate the effects of soil minerals on the thermal evolution of fulvic acids (FA) by this method. There are many other applications for solving problems of immediate concern and for better understanding of the quality and role of SOM in soils.
Biology and Fertility of Soils | 1997
H.-R. Schulten; C. Sorge-Lewin; Morris Schnitzer
Abstract Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in-source pyrolysis-field ionization mass spectrometry (Py-FIMS) were applied for the first time to the structural characterization of organic nitrogen in hydrolyzates and hydrolysis residues resulting from the classical 6M HCl hydrolysis of mineral soils. Two well-described soils of widely different origin (i.e., a Gleysol Ah and a Podzol Bh) were investigated. Py-GC/MS was performed using a nitrogen-selective detector to detect and identify N-containing pyrolysis in the hydrolyzate (e.g., pyrazole and/or imidazole, N,N-dimethylmethanamine, benzenacetonitrile, propane- and propenenitriles) and the hydrolysis residue (e.g., pyrroles, pyridines, indoles, N-derivatives of benzene, benzothiazol, and long-chain aliphatic nitriles). Moreover, temperature-resolved Py-FIMS allowed us to record the thermal evolution of the N-containing compounds during pyrolysis. These were characterized by a particularly high thermostability compared to their thermal release from whole soils. The combination of pyrolysis with mass spectrometric methods permitted analyses of the identities and thermal stabilities of complex nitrogen compounds in hydrolysis residues of whole soils, which cannot be done by wet-chemical methods. Pyrolysis-methylation GC/MS with tetramethyl-ammonium hydroxide (TMAH) as methylating agent enabled the identification of N,N-dimethylbenzenamine and so confirmed the identification of benzeneamine by Py-GC/MS in nonmethylated hydrolysis residues. The described N-derivatives of benzene and long-chain nitriles are usually not detectable by pyrolysis-mass spectrometry of plants and microorganisms. These compounds are characteristic of soils, terrestrial humic substances and hydrolysis residues and seem to be specific, stable transformation products of soil nitrogen.