Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morten Grunnet is active.

Publication


Featured researches published by Morten Grunnet.


Nature Genetics | 2008

Single-copy insertion of transgenes in Caenorhabditis elegans.

Christian Frøkjær-Jensen; M. Wayne Davis; Christopher E. Hopkins; Blake Newman; Jason M. Thummel; Søren Peter Olesen; Morten Grunnet; Erik M. Jorgensen

At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.


The Journal of Physiology | 2002

KCNE4 is an inhibitory subunit to the KCNQ1 channel

Morten Grunnet; Thomas Jespersen; Hanne Borger Rasmussen; Trine Ljungstrøm; Nanna K. Jorgensen; Søren-Peter Olesen; Dan A. Klaerke

KCNE4 is a membrane protein belonging to a family of single transmembrane domain proteins known to have dramatic effect on the gating of certain potassium channels. However, no functional role of KCNE4 has been suggested so far. In the present paper we demonstrate that KCNE4 is an inhibitory subunit to KCNQ1 channels. Co‐expression of KCNQ1 and KCNE4 in Xenopus oocytes completely inhibited the KCNQ1 current. This was reproduced in mammalian CHO‐K1 cells. Experiments with delayed expression of mRNA coding for KCNE4 in KCNQ1‐expressing oocytes suggested that KCNE4 exerts its effect on KCNQ1 channels already expressed in the plasma membrane. This notion was supported by immunocytochemical studies and Western blotting, showing no significant difference in plasma membrane expression of KCNQ1 channels in the presence or absence of KCNE4. The impact of KCNE4 on KCNQ1 was specific since no effect of KCNE4 could be detected if co‐expressed with KCNQ2‐5 channels or hERG1 channels. RT‐PCR studies revealed high KCNE4 expression in embryos and adult uterus, where significant expression of KCNQ1 channels has also been demonstrated.


Circulation-arrhythmia and Electrophysiology | 2010

Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation.

Jonas Goldin Diness; Ulrik Svane Sørensen; Jakob D. Nissen; Baha Al-Shahib; Thomas Jespersen; Morten Grunnet; Rie Schultz Hansen

Background—Recently, evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors, UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA), and NS8593, to assess the hypothesis that pharmacological inhibition of SK channels is antiarrhythmic. Methods and Results—In isolated, perfused guinea pig hearts, AF could be induced in all control hearts (n=7) with a combination of 1 &mgr;mol/L acetylcholine combined with electric stimulation. Pretreatment with 3 &mgr;mol/L NS8593, which had no effect on QT interval, prolonged the atrial effective refractory period by 37.1±7.7% (P<0.001) and prevented acetylcholine-induced AF (P<0.001, n=7). After AF induction, perfusion with NS8593 (10 &mgr;mol/L), UCL1684 (1 &mgr;mol/L), or ICA (1 &mgr;mol/L) terminated AF in all hearts, comparable to 10 &mgr;mol/L amiodarone. In isolated, perfused rat hearts, AF was induced with electric stimulation; 10 &mgr;mol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). In all hearts, AF could be reinduced after washing. In isolated, perfused rabbit hearts, AF was induced with 10 &mgr;mol/L acetylcholine and burst pacing; 10 &mgr;mol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). After washing, AF could be reinduced in 75% of the hearts (n=4, P=0.06). In an in vivo rat model of acute AF induced by burst pacing, injection of 5 mg/kg of either NS8593 or amiodarone shortened AF duration significantly to (23.2±20.0%, P<0.001, n=5, and 26.2±17.9%, P<0.001, n=5, respectively) as compared with injection of vehicle (96.3±33.2%, n=5). Conclusions—Inhibition of SK channels prolongs atrial effective refractory period without affecting QT interval and prevents and terminates AF ex vivo and in vivo, thus offering a promising new therapeutic opportunity in the treatment of AF.


Neuropharmacology | 2001

Pharmacological modulation of SK3 channels.

Morten Grunnet; Thomas Jespersen; Kamilla Angelo; Christian Frøkjær-Jensen; Dan A. Klaerke; Søren-Peter Olesen; Bo Skaaning Jensen

Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adaptation, pharmacological modulation of SK channels may be of significant clinical importance. Here we report the functional expression of SK3 in HEK293 and demonstrate a broad pharmacological profile for these channels. Brain slice studies commonly employ 4-aminopyridine (4-AP) to block voltage-dependent K+ channels or a methyl derivative of bicuculline, a blocker of gamma-aminobutyric acid (GABA)-gated Cl- channels, in order to investigate the role of various synapses in specialized neural networks. However, in this study both 4-AP and bicuculline are shown to inhibit SK3 channels (IC50 values of 512 microM and 6 microM, respectively) at concentrations lower than those used for brain slice recordings. Riluzole, a potent neuroprotective drug with anti-ischemic, anticonvulsant and sedative effects currently used in the treatment of amyotrophic lateral sclerosis, activates SK3 channels at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6).


Biophysical Journal | 2002

KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current.

Kamilla Angelo; Thomas Jespersen; Morten Grunnet; Morten Schak Nielsen; Dan A. Klaerke; Søren-Peter Olesen

The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues in the transmembrane domain of the KCNE5 protein were found to be important for the control of the voltage-dependent activation of the KCNQ1 current. We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels. It is possible that KCNE5 shapes the I(Ks) current in certain parts of the mammalian heart.


Physiological Reviews | 2014

Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia

Nicole Schmitt; Morten Grunnet; Søren-Peter Olesen

About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.


Circulation | 2014

Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog.

Xiao-Yan Qi; Jonas Goldin Diness; Bianca J.J.M. Brundel; Xiao-Bo Zhou; Patrice Naud; Hai Huang; Masahide Harada; Mona Aflaki; Dobromir Dobrev; Morten Grunnet; Stanley Nattel

Background— Recent evidence points to functional Ca2+-dependent K+ (SK) channels in the heart that may govern atrial fibrillation (AF) risk, but the underlying mechanisms are unclear. This study addressed the role of SK channels in atrial repolarization and AF persistence in a canine AF model. Methods and Results— Electrophysiological variables were assessed in dogs subjected to atrial remodeling by 7-day atrial tachypacing (AT-P), as well as controls. Ionic currents and single-channel properties were measured in isolated canine atrial cardiomyocytes by patch clamp. NS8593, a putative selective SK blocker, suppressed SK current with an IC50 of ≈5 &mgr;mol/L, without affecting Na+, Ca2+, or other K+ currents. Whole-cell SK current sensitive to NS8593 was significantly larger in pulmonary vein (PV) versus left atrial (LA) cells, without a difference in SK single-channel open probability (Po), whereas AT-P enhanced both whole-cell SK currents and single-channel Po. SK-current block increased action potential duration in both PV and LA cells after AT-P; but only in PV cells in absence of AT-P. SK2 expression was more abundant at both mRNA and protein levels for PV versus LA in control dogs, in both control and AT-P; AT-P upregulated only SK1 at the protein level. Intravenous administration of NS8593 (5 mg/kg) significantly prolonged atrial refractoriness and reduced AF duration without affecting the Wenckebach cycle length, left ventricular refractoriness, or blood pressure. Conclusions— SK currents play a role in canine atrial repolarization, are larger in PVs than LA, are enhanced by atrial-tachycardia remodeling, and appear to participate in promoting AF maintenance. These results are relevant to the potential mechanisms underlying the association between SK single-nucleotide polymorphisms and AF and suggest SK blockers as potentially interesting anti-AF drugs.


The Journal of Physiology | 2003

KCNQ1 channels sense small changes in cell volume.

Morten Grunnet; Thomas Jespersen; Nanna MacAulay; Nanna K. Jorgensen; Nicole Schmitt; Olaf Pongs; Søren-Peter Olesen; Dan A. Klaerke

Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage‐gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co‐expressed with aquaporin 1 water‐channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related KCNQ2 and KCNQ3 channels, which are prominently expressed in neurons, are insensitive to cell volume changes. The sensitivity of the KCNQ1 and KCNQ4 channels to cell volume changes is independent of the presence of the auxiliary KCNE1–3 subunits, although modulated by KCNE1 in the case of KCNQ1. Incubation of the oocytes in cytochalasin D and experiments with truncated KCNQ1 channels suggest that KCNQ1 channels sense cell volume changes through interactions between the cytoskeleton and the N‐terminus of the channel protein. From our results we propose that KCNQ1 and KCNQ4 channels play an important role in cell volume control, e.g. during transepithelial transport of salt and water.


Cardiovascular Research | 2008

A transient outward potassium current activator recapitulates the electrocardiographic manifestations of Brugada syndrome

Kirstine Calloe; Jonathan M. Cordeiro; José M. Di Diego; Rie Schultz Hansen; Morten Grunnet; Søren Peter Olesen; Charles Antzelevitch

AIMS Transient outward potassium current (I(to)) is thought to be central to the pathogenesis of the Brugada syndrome (BrS). However, an I((to)) activator has not been available with which to validate this hypothesis. Here, we provide a direct test of the hypothesis using a novel I(to) activator, NS5806. METHODS AND RESULTS Isolated canine ventricular myocytes and coronary-perfused wedge preparations were used. Whole-cell patch-clamp studies showed that NS5806 (10 microM) increased peak I(to) at +40 mV by 79 +/- 4% (24.5 +/- 2.2 to 43.6 +/- 3.4 pA/pF, n = 7) and slowed the time constant of inactivation from 12.6 +/- 3.2 to 20.3 +/- 2.9 ms (n = 7). The total charge carried by I(to) increased by 186% (from 363.9 +/- 40.0 to 1042.0 +/- 103.5 pA x ms/pF, n = 7). In ventricular wedge preparations, NS5806 increased phase 1 and notch amplitude of the action potential in the epicardium, but not in the endocardium, and accentuated the ECG J-wave, leading to the development of phase 2 re-entry and polymorphic ventricular tachycardia (n = 9). Although sodium and calcium channel blockers are capable of inducing BrS only in right ventricular (RV) wedge preparations, the I(to) activator was able to induce the phenotype in wedges from both ventricles. NS5806 induced BrS in 4/6 right and 2/10 left ventricular wedge preparations. CONCLUSION The I(to) activator NS5806 recapitulates the electrographic and arrhythmic manifestation of BrS, providing evidence in support of its pivotal role in the genesis of the disease. Our findings also suggest that a genetic defect leading to a gain of function of I(to) could explain variants of BrS, in which ST-segment elevation or J-waves are evident in both right and left ECG leads.


Pflügers Archiv: European Journal of Physiology | 2009

Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

Ewa Soltysinska; Søren-Peter Olesen; Torsten Christ; Erich Wettwer; András Varró; Morten Grunnet; Thomas Jespersen

The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrical activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid-, and epicardium of left ventricle, enabling us to establish changes in the transmural expression gradient. Transcripts encoding Cav1.2, HCN2, Kir2.1, KCNE1, SUR1, and NCX1 were upregulated in HF compared to NF while a downregulation was observed for KChIP2, SERCA2, and miR-1. Additionally, the transmural gradient of KCNE1, KChIP2, Kir6.2, SUR1, Nav1.5, NCX1, and RyR2 found in NF was only preserved for KChiP2 and Nav1.5 in HF. The transmural gradients of NCX1, Nav1.5, and KChIP2 and the downregulation of KChIP2 were confirmed by Western blotting. In conclusion, our results reveal altered expression of several cardiac ion channels and transporters which may in part explain the increased susceptibility to arrhythmia in end-state failing hearts.

Collaboration


Dive into the Morten Grunnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan A. Klaerke

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Antonio Nardi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge