Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morten Hvitfeldt Iversen is active.

Publication


Featured researches published by Morten Hvitfeldt Iversen.


The ISME Journal | 2011

Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii

Astrid Gärdes; Morten Hvitfeldt Iversen; Hans-Peter Grossart; Uta Passow; Matthias S. Ullrich

Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.


Applied and Environmental Microbiology | 2015

Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow

Stefan Thiele; Bernhard M. Fuchs; Rudolf Amann; Morten Hvitfeldt Iversen

ABSTRACT Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.


FEMS Microbiology Ecology | 2012

Ecological structuring of bacterial and archaeal taxa in surface ocean waters

Pelin Yilmaz; Morten Hvitfeldt Iversen; Wolfgang Hankeln; Renzo Kottmann; Christian Quast; Frank Oliver Glöckner

The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.


europe oceans | 2009

In-situ sinking speed measurements of marine snow aggregates acquired with a settling chamber mounted to the Cherokee ROV

Nicolas Nowald; Gerhard Fischer; Volker Ratmeyer; Morten Hvitfeldt Iversen; C Reuter; Gerold Wefer

Marine snow plays a key role in the global carbon cycle because it transfers huge amounts of carbon dioxide (around 1–2 Gt per year) from the ocean surface to the deep-sea, thus removing it from the global system. It is of major field of study for several decades to quantify the amount of particulate matter settling through the water column. A central parameter for ocean mass flux estimates is the settling velocity of larger particles. Most of the few available datasets have been acquired by Scuba divers but are they are limited to a diving depth of a few tenth of meters. Particle settling speeds for the deeper water column may be estimated with the help of sediment trap recordings, having the disadvantage to integrate settling speeds over a long period of time and for the entire particle population settling through the water column. In situ sinking speed measurements of individual aggregates however, are rare and difficult to obtain. We present results from a settling chamber constructed for in situ sinking speed measurements of marine snow. The settling chamber was mounted to the MARUM Cherokee ROV during RV Poseidon Cruise 365 in 2008 off Cape Blanc, Mauritania. It was constructed in consideration of a similar device used by the MBARI ROV Ventana. It is a simple plexiglas box which can be opened and closed to allow an infinite number of measurements with little disturbance inside. A collimated light source illuminates a defined sample volume in which aggregates can be observed after the box has been closed. We sampled a total of 51 aggregates at four depth levels, between 50m and 400m water depth. The depths were chosen after collecting a vertical particle profile acquired by a deep-sea still image camera system before the deployment of the ROV. Sinking speeds ranged from 10m d−1to 287 m d−1 with a mean value of 57 m d−1. No clear relationsship between the size of the particles and their sinking speed was found. Furthermore we could not observe increasing particle sinking speeds with increasing water depth as found by other authors. This underlines the complexity of such studies and implies more deployments during upcoming cruises and comparison of in situ measurements with additional methods in the future.


Frontiers in Marine Science | 2016

Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): Fieldwork, Synthesis, and Modeling Efforts

Richard Sanders; Stephanie A. Henson; Adrian P. Martin; Thomas R. Anderson; Raffaele Bernardello; Peter Enderlein; Sophie Fielding; Sarah L. C. Giering; Manuela Hartmann; Morten Hvitfeldt Iversen; Samar Khatiwala; Phyllis Lam; Richard S. Lampitt; Daniel J. Mayor; Mark Moore; Eugene J. Murphy; Stuart C. Painter; Alex J. Poulton; Kevin Saw; Gabriele Stowasser; Geraint A. Tarling; Sinhue Torres-Valdes; George A. Wolff; Andrew Yool; Mike Zubkov

The ocean’s biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralisation resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralisation depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However these analyses do not provide a mechanistic understanding of remineralisation, which increases the challenge of appropriately modelling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterisation for mesopelagic remineralisation within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme’s rationale, its goals, planned fieldwork and modelling activities, with the aim of stimulating international collaboration.


Frontiers in Marine Science | 2017

First Evaluation of the Role of Salp Fecal Pellets on Iron Biogeochemistry

Damien Cabanes; Louiza Norman; Juan Santos-Echeandía; Morten Hvitfeldt Iversen; Scarlett Trimborn; Luis M. Laglera; Christel S. Hassler

Planktonic grazers such as salps may have a dominant role in iron (Fe) cycling in surface waters of the Southern Ocean (SO). Salps have high ingestion rates and egest large, fast sinking fecal pellets (FPs) that potentially contribute to the vertical flux of carbon. In this study, we determined the impact of FPs from Salpa thompsoni, the most abundant salp in the SO, on Fe biogeochemistry. During the Polarstern expedition ANT-XXVII/3, salps were sampled from a large diatom bloom area in the Atlantic sector of the SO. Extensive work on carbon export and salp FPs export at the sampling location had shown that salps were a minor component of zooplankton and were responsible for only a 0.2% consumption of the daily primary production. Furthermore, at 100 m, export efficiency of salp FPs was ~2-3 fold higher than that of the bulk of sinking particulate organic carbon (POC). After collection, salps were maintained in 200 µm screened seawater and their FPs were collected for further experiments. To investigate whether the FPs release Fe and/or Fe-binding ligands into the filtered seawater (FSW) under different experimental conditions, they were either incubated in the dark or under full sunlight at in situ temperatures for 24h, or placed into the dark after a freeze/thaw treatment. We observed that none of the treatments caused release of dissolved Fe (dFe) or strong Fe ligands from the salp FPs. However, humic-substance like (HS-like) compounds, weak Fe ligands, were released at a rate of 8.2 ± 4.7 µg HS-like FP-1 d-1. Although the Fe content per salp FP was high at 0.33 ± 0.02 nmol dFe FP-1, the small contribution of salps to the zooplankton pool resulted in an estimated dFe export flux of 11.3 nmol Fe m-2 d-1 at 300 m. Since salp FPs showed an export efficiency at 100 m well above that shown by the bulk of sinking POC, our results suggest that in those areas of the SO where salps play a major role in the grazing of primary production, they could be actively contributing to the depletion of the dFe pool in surface water.


Geophysical Research Letters | 2017

Intense biological phosphate uptake onto particles in subeuphotic continental margin waters

Sarah Sokoll; Timothy G. Ferdelman; Moritz Holtappels; Tobias Goldhammer; Sten Littmann; Morten Hvitfeldt Iversen; Marcel M. M. Kuypers

Elucidating the processes that affect particulate phosphorus (P) export from the euphotic zone and burial in sediments is important for models of global phosphorus, nitrogen and carbon cycling. We investigated dissolved inorganic Pi incorporation into particles (>0.2 µm) in the sub-euphotic zone and benthic boundary layer (BBL) of high productivity Mauritanian and Namibian shelf waters, using 33PO43- tracer experiments combined with a sequential chemical extraction analysis. Pi uptake (5.4 to19.9 nmol P L-1d-1) by particulate matter was biologically mediated (~50% into the organic fraction), and similar to estimated rates of heterotrophic growth. Thus, a substantial fraction of Pi must be recycled through a particle-associated microbial pool. Rapid adsorption of 33P in the anoxic waters of Namibia indicated the additional existence of a large pool of surface exchangeable P. Particle associated Pi recycling and adsorption may influence the export flux and ultimate fate of particle bound P in continental shelf waters.


MicrobiologyOpen | 2018

Microbial communities in the nepheloid layers and hypoxic zones of the Canary Current upwelling system

Stefan Thiele; Andreas Basse; Jamie W. Becker; André Lipski; Morten Hvitfeldt Iversen; Gesine Mollenhauer

Eastern boundary upwelling systems (EBUSs) are among the most productive marine environments in the world. The Canary Current upwelling system off the coast of Mauritania and Morocco is the second most productive of the four EBUS, where nutrient‐rich waters fuel perennial phytoplankton blooms, evident by high chlorophyll a concentrations off Cape Blanc, Mauritania. High primary production leads to eutrophic waters in the surface layers, whereas sinking phytoplankton debris and horizontally dispersed particles form nepheloid layers (NLs) and hypoxic waters at depth. We used Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD‐FISH) in combination with fatty acid (measured as methyl ester; FAME) profiles to investigate the bacterial and archaeal community composition along transects from neritic to pelagic waters within the “giant Cape Blanc filament” in two consecutive years (2010 and 2011), and to evaluate the usage of FAME data for microbial community studies. We also report the first fatty acid profile of Pelagibacterales strain HTCC7211 which was used as a reference profile for the SAR11 clade. Unexpectedly, the reference profile contained low concentrations of long chain fatty acids 18:1 cis11, 18:1 cis11 11methyl, and 19:0 cyclo11–12 fatty acids, the main compounds in other Alphaproteobacteria. Members of the free‐living SAR11 clade were found at increased relative abundance in the hypoxic waters in both years. In contrast, the depth profiles of Gammaproteobacteria (including Alteromonas and Pseudoalteromonas), Bacteroidetes, Roseobacter, and Synechococcus showed high abundances of these groups in layers where particle abundance was high, suggesting that particle attachment or association is an important mechanisms of dispersal for these groups. Collectively, our results highlight the influence of NLs, horizontal particle transport, and low oxygen on the structure and dispersal of microbial communities in upwelling systems.


Geophysical Research Letters | 2018

Observations of a Submesoscale Cyclonic Filament in the Marginal Ice Zone

Wilken-Jon von Appen; Claudia Wekerle; Laura Hehemann; Vibe Schourup-Kristensen; Christian Konrad; Morten Hvitfeldt Iversen

Submesoscale flows are energetic motions on scales of several kilometers that may lead to substantial vertical motions. Here we present satellite and ship radar as well as underway conductivity-temperature-depth and Acoustic Doppler Current Profiler observations of a cyclonic submesoscale filament in the marginal ice zone of Fram Strait. The filament created a 500-m thin and 50-km long sea ice streak and extends to >250-m depth with a negative/positive density anomaly within/below the halocline. The frontal jets of 0.5 m/s are in turbulent thermal wind balance while the ageostrophic secondary circulation in places appears to subduct Atlantic Water at >50 m/day. Our study reveals the submesoscale dynamics related to sea ice shapes that can be sensed remotely and shows how submesoscale dynamics contribute to shaping the marginal ice zone. It also demonstrates the co-occurrence and mixing of water masses over short horizontal scales, which has implications for ocean and sea ice models and understanding of patch formation of planktonic organisms. Plain Language Summary A sea ice streak in the marginal ice zone was observed with radar measurements. Below this streak in situ shipboard measurements of the temperature, salinity, and velocity field revealed a cyclonic submesoscale filament. This is a line of denser water of a few kilometers width bounded by strong counteracting velocities. This denser water is also associated with a different water mass and thus a change in biological properties and communities. This provides in situ confirmation for previous theoretical conclusions of how oceanic flows on kilometer scales structure the sea ice and biology in the marginal ice zone. The understanding of such small-scale processes helps improve computer models of the ocean and sea ice dynamics. It also makes it possible to interpret oceanic flows from remote sensing of sea ice. Furthermore, it gives indication over which horizontal scales biological processes vary in the ocean.


Frontiers in Marine Science | 2018

Copepods Boost the Production but Reduce the Carbon Export Efficiency by Diatoms

Brivaëla Moriceau; Morten Hvitfeldt Iversen; Morgane Gallinari; Antti-Jussi O. Evertsen; Manon Le Goff; Beatriz Beker; Julia Boutorh; Rudolph Corvaisier; Nathalie Coffineau; Anne Donval; Sarah L. C. Giering; Marja Koski; Christophe Lambert; Richard S. Lampitt; Alain Le Mercier; Annick Masson; Herwig Stibor; Maria Stockenreiter; Christina L. De La Rocha

The fraction of net primary production that is exported from the euphotic zone as sinking particulate organic carbon (POC) varies notably through time and from region to region. Phytoplankton containing biominerals, such as silicified diatoms have long been associated with high export fluxes. However, recent reviews point out that the magnitude of export is not controlled by diatoms alone, but determined by the whole plankton community structure. The combined effect of phytoplankton community composition and zooplankton abundance on export flux dynamics, were explored using a set of 12 large outdoor mesocosms. All mesocosms received a daily addition of minor amounts of nitrate and phosphate, while only 6 mesocosms received silicic acid (dSi). This resulted in a dominance of diatoms and dinoflagellate in the +Si mesocosms and a dominance of dinoflagellate in the –Si mesocosms. Simultaneously, half of the mesocosms had decreased mesozooplankton populations whereas the other half were supplemented with additional zooplankton. In all mesocosms, POC fluxes were positively correlated to Si/C ratios measured in the surface community and additions of dSi globally increased the export fluxes in all treatments highlighting the role of diatoms in C export. The presence of additional copepods resulted in higher standing stocks of POC, most probably through trophic cascades. However it only resulted in higher export fluxes for the –Si mesocosms. In the +Si with copepod addition (+Si +Cops) export was dominated by large diatoms with higher Si/C ratios in sinking material than in standing stocks. During non-bloom situations, the grazing activity of copepods decrease the export efficiency in diatom dominated systems by changing the structure of the phytoplankton community and/or preventing their aggregation. However, in flagellate-dominated system, the copepods increased phytoplankton growth, aggregation and fecal pellet production, with overall higher net export not always visible in term of export efficiency.

Collaboration


Dive into the Morten Hvitfeldt Iversen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helle Ploug

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Christine Klaas

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Louise K. Poulsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge