Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mridula Kadalbajoo is active.

Publication


Featured researches published by Mridula Kadalbajoo.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel 6-aminofuro[3,2-c]pyridines as potent, orally efficacious inhibitors of cMET and RON kinases

Arno G. Steinig; An-Hu Li; Jing Wang; Xin Chen; Hanqing Dong; Caterina Ferraro; Meizhong Jin; Mridula Kadalbajoo; Andrew Kleinberg; Kathryn M. Stolz; Paula A. Tavares-Greco; Ti Wang; Mark Albertella; Yue Peng; Linda Crew; Jennifer Kahler; Julie Kan; Ryan Schulz; Andy Cooke; Mark Bittner; Roy Turton; Maryland Franklin; Prafulla C. Gokhale; Darla Landfair; Christine Mantis; Jen Workman; Robert Wild; Jonathan A. Pachter; David M. Epstein; Mark J. Mulvihill

A series of novel 6-aminofuro[3,2-c]pyridines as kinase inhibitors is described, most notably, OSI-296 (6). We discuss our exploration of structure-activity relationships and optimization leading to OSI-296 and disclose its pharmacological activity against cMET and RON in cellular assays. OSI-296 is a potent and selective inhibitor of cMET and RON kinases that shows in vivo efficacy in tumor xenografts models upon oral dosing and is well tolerated.


ACS Medicinal Chemistry Letters | 2013

Discovery of novel insulin-like growth factor-1 receptor inhibitors with unique time-dependent binding kinetics.

Meizhong Jin; Brenda A. Petronella; Andy Cooke; Mridula Kadalbajoo; Kam W. Siu; Andrew Kleinberg; Earl May; Prafulla C. Gokhale; Ryan Schulz; Jennifer Kahler; Mark Bittner; Kenneth Foreman; Jonathan A. Pachter; Robert Wild; David M. Epstein; Mark J. Mulvihill

This letter describes a series of small molecule inhibitors of IGF-1R with unique time-dependent binding kinetics and slow off-rates. Structure-activity and structure-kinetic relationships were elucidated and guided further optimizations within the series, culminating in compound 2. With an IGF-1R dissociative half-life (t 1/2) of >100 h, compound 2 demonstrated significant and extended PD effects in conjunction with tumor growth inhibition in xenograft models at a remarkably low and intermittent dose, which correlated with the observed in vitro slow off-rate properties.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of potent, selective and orally bioavailable imidazo[1,5-a]pyrazine derived ACK1 inhibitors

Meizhong Jin; Jing Wang; Andrew Kleinberg; Mridula Kadalbajoo; Kam W. Siu; Andrew Cooke; Mark Bittner; Yan Yao; April Thelemann; Qun-Sheng Ji; Shripad V. Bhagwat; Kristen Michelle Mulvihill; Josef A. Rechka; Jonathan A. Pachter; Andrew P. Crew; David M. Epstein; Mark J. Mulvihill

This Letter describes the medicinal chemistry effort towards a series of novel imidazo[1,5-a]pyrazine derived inhibitors of ACK1. Virtual screening led to the discovery of the initial hit, and subsequent exploration of structure-activity relationships and optimization of drug metabolism and pharmacokinetic properties led to the identification of potent, selective and orally bioavailable ACK1 inhibitors.


ACS Medicinal Chemistry Letters | 2010

Discovery of an Orally Efficacious Imidazo[5,1-f][1,2,4]triazine Dual Inhibitor of IGF-1R and IR.

Meizhong Jin; Prafulla C. Gokhale; Andy Cooke; Kenneth Foreman; Elizabeth Buck; Earl May; Lixin Feng; Mark Bittner; Mridula Kadalbajoo; Darla Landfair; Kam W. Siu; Kathryn M. Stolz; Douglas S. Werner; Radoslaw Laufer; An-Hu Li; Hanqing Dong; Arno G. Steinig; Andrew Kleinberg; Yan Yao; Jonathan A. Pachter; Robert Wild; Mark J. Mulvihill

This report describes the investigation of a series of 5,7-disubstituted imidazo[5,1-f][1,2,4]triazine inhibitors of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR). Structure-activity relationship exploration and optimization leading to the identification, characterization, and pharmacological activity of compound 9b, a potent, selective, well-tolerated, and orally bioavailable dual inhibitor of IGF-1R and IR with in vivo efficacy in tumor xenograft models, is discussed.


Cancer Research | 2013

Abstract 2463: Discovery of imidazo[1,5-a]pyrazine derived potent, selective and orally bioavailable ACK1 inhibitors.

Meizhong Jin; Jing Wang; Andrew Kleinberg; Mridula Kadalbajoo; Kam W. Siu; Andrew Cooke; Mark Bittner; Yan Yao; April Thelemann; Qun-Sheng Ji; Shripad V. Bhagwat; Kristen Michelle Mulvihill; Josef A. Rechka; Jonathan A. Pachter; Andrew P. Crew; David M. Epstein; Mark J. Mulvihill

Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC Activated Cdc42-associated kinase (ACK1) is a non-receptor tyrosine kinase originally identified by virtue of its binding to GTP-bound small GTPase Cdc42. Considerable attention has been paid to ACK1’s involvement in cancer in recent years. For example, gene amplification and over-expression of ACK1 were found in multiple cancers including lung, ovarian and prostate cancers and were associated with poor prognosis and metastatic phenotypes. Activated ACK1 has been shown to phosphorylate and activate androgen receptor function and to promote the progression of prostate cancer. More recently, activated ACK1 was found to phosphorylate and promote the activation of Akt, a protein kinase that plays a central role in growth, proliferation and cell survival in various cancers. Taken together, these literature data suggest that ACK1 is a potential target for cancer treatment. Several series of ACK1 inhibitors have been previously disclosed in literature. Unfortunately, compounds from these series suffer from poor oral pharmacokinetic (PK) properties which have prevented them from being utilized further for in vivo studies. Therefore, there is a clear need for potent, selective and orally bioavailable small molecule ACK1 inhibitors to further probe its role in cancer, both in the in vitro and in vivo setting. This report describes the medicinal chemistry effort towards a series of novel imidazo[1,5-a]pyrazine derived inhibitors of ACK1. Virtual screening led to the discovery of the initial hit, and subsequent exploration of structure-activity relationships and optimization of drug metabolism and pharmacokinetic properties led to the identification of potent, selective and orally bioavailable ACK1 inhibitors. Citation Format: Meizhong Jin, Jing Wang, Andrew Kleinberg, Mridula Kadalbajoo, Kam W. Siu, Andrew Cooke, Mark Bittner, Yan Yao, April Thelemann, Qunsheng Ji, Shripad Bhagwat, Kristen M. Mulvihill, Josef A. Rechka, Jonathan A. Pachter, Andrew P. Crew, David Epstein, Mark J. Mulvihill. Discovery of imidazo[1,5- a ]pyrazine derived potent, selective and orally bioavailable ACK1 inhibitors. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2463. doi:10.1158/1538-7445.AM2013-2463


Cancer Research | 2012

Abstract 3900: Discovery of FQIT: An imidazo[5,1-f][1,2,4]triazine derived dual IGF-1R/IR inhibitor

Meizhong Jin; Prafulla C. Gokhale; Andy Cooke; Kenneth Foreman; Elizabeth Buck; Earl May; Lixing Feng; Mark Bittner; Mridula Kadalbajoo; Darla Landfair; Kam W. Siu; Kathryn M. Stolz; Douglas S. Werner; Radoslaw Laufer; An-Hu Li; Hanqing Dong; Arno G. Steinig; Andrew Kleinberg; Yan Yao; Jonathan A. Pachter; Robert Wild; Mark J. Mulvihill

Insulin-like growth factor-1 receptor (IGF-1R) has been recognized as a major target in cancer drug discovery due to its strong implications in various stages of tumorigenesis based on accumulated preclinical data over the years. Recent research on compensatory crosstalk between IGF-1R and insulin receptor (IR) signaling pathways suggests that targeting both receptors is critical to fully blocking the IGF signaling axis. Therefore, inhibition of both receptors is anticipated to result in a more therapeutically beneficial response than targeting IGF-1R alone (e.g. IGF-1R specific antibodies). These findings provided the biological rationale as well as set the foundation for the pursuit and ultimate discovery of OSI-906 (linsitinib), a small molecule dual IGF-1R/IR inhibitor currently in clinical development. As part of OSI9s ongoing investment in a small molecule drug discovery platform targeting IGF-1R and IR, a new series of potent and selective imidazo[5,1-f][1,2,4]triazine derived inhibitors of IGF-1R and IR have been identified. Structure-activity relationships and optimization driven by structure-based drug design (SBDD) leading to the discovery of FQIT, a potent, highly selective, well-tolerated and orally bioavailable dual inhibitor of IGF-1R and IR with in vivo efficacy in multiple tumor xenograft models will be discussed. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3900. doi:1538-7445.AM2012-3900


Archive | 2006

Bicyclic protein kinase inhibitors

Andrew Philip Crew; Hanqing Dong; Mark J. Mulvihill; Douglas S. Werner; Mridula Kadalbajoo; Radoslaw Laufer


Synthesis | 2010

One-Pot FriedländerQuinoline Synthesis: Scope and Limitations

An-Hu Li; David J. Beard; Heather Coate; Ayako Honda; Mridula Kadalbajoo; Andrew Kleinberg; Radoslaw Laufer; Kristen Michelle Mulvihill; Anthony Nigro; Pawan Rastogi; Dan Sherman; Kam W. Siu; Arno G. Steinig; Ti Wang; Doug Werner; Andrew P. Crew; Mark J. Mulvihill


Archive | 2009

Substituted imidazopyr-and imidazotri-azines

Andrew P. Crew; Meizhong Jin; Mridula Kadalbajoo; Andrew Kleinberg; Mark J. Mulvihill; Jing Wang


Tetrahedron Letters | 2010

Synthetic approaches to 5,7-disubstituted imidazo[5,1-f][1,2,4]triazin-4-amines

Douglas S. Werner; Hanqing Dong; Mridula Kadalbajoo; Radoslaw Laufer; Paula A. Tavares-Greco; Brian Volk; Mark J. Mulvihill; Andrew P. Crew

Collaboration


Dive into the Mridula Kadalbajoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge