Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myron G. Best is active.

Publication


Featured researches published by Myron G. Best.


Journal of Geophysical Research | 1991

Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah

Myron G. Best; Eric H. Christiansen

The relative timing and magnitude of middle Tertiary extension and volcanism in the Great Basin (northern Basin and Range province) of the western United States remain controversial. To constrain the timing, we present 31 stratigraphic sections from the central part of the province, together with data from other studies in the Great Basin. Especially significant in this record of regional paleogeographic and associated tectonic conditions are thick sections of many well-dated ash flow sheets emplaced during the period of the most voluminous, or peak, volcanic activity about 31–20 Ma. From these data we make the following conclusions: (1) Extension prior to the period of peak volcanism was apparently localized. (2) Extension during peak volcanism (the ignimbrite flareup) was minor and in places possibly related to magmatic processes in the shallow crust, rather than to regional tectonic processes. Angular unconformities and interbedded epiclastic deposits within sequences of volcanic rocks from 31 to about 22–20 Ma that would manifest synvolcanic faulting, tilting, and erosion are limited. (3) In the Great Basin as a whole, major extension and peak volcanism correlate poorly in space as well as time. (4) Essentially dip-slip faults cutting the entire conformable volcanic sequence are common in the Great Basin and indicate a widespread episode of extension after peak volcanism. Southward sweeping Tertiary volcanism in the Great Basin reflects migration of the mantle magma supply that powered crustal magma systems. We suspect this migration was related to progressive southward foundering and steepening of dip of a subducting oceanic plate (after an earliest Tertiary near-horizontal configuration beneath the continental lithosphere) and consequent backflow of asthenospheric mantle into the widening wedge between the plates. In the northern Great Basin, where the sweep was rapid, we postulate that relatively small volumes of mantle-derived magma were inserted as dikes into the lower, locally extending crust which was unusually warm because of Mesozoic compressional thickening; crustal magma systems so powered were repeatedly tapped to feed modest volume eruptions of chiefly intermediate composition lava and minor silicic ash flow tuff. As the sweep stagnated in the central southern Great Basin, copious volumes of mafic magma were inserted into the crust, apparently mostly as extensive horizontal sheets, or sills, in a nonextending, uplifting crust in a state of nearly isotropic horizontal stress. These sills and the high mantle power input optimized crustal magma generation, creating huge volumes of silicic magma that vented as large volume ash flows, chiefly about 31–20 Ma. After about 22–20 Ma, the volcanic-capped plateau collapsed in a widespread network of north striking extensional faults as plate boundary compressive forces were overcome by spreading forces within the uplift. Eruption of lava again became the dominant mode of volcanism.


Geological Society of America Bulletin | 1974

Late Cenozoic Alkalic Basaltic Magmas in the Western Colorado Plateaus and the Basin and Range Transition Zone, U.S.A., and Their Bearing on Mantle Dynamics

Myron G. Best; W. H. Brimhall

Late Cenozoic volcanism along the eastern margin of the Basin and Range province in northern Arizona and Utah has created a suite of essentially alkalic basaltic lavas similar to those occurring in other regions of recent uplift, extensional tectonism, and high heat flow. The lavas were derived from a series of partial melts of the mantle, modified to varying degrees by polybaric fractionation of olivine and possibly plagioclase and clinopyroxene during ascent to the surface. Basanite and alkali olivine basalt melts originated at depths of at least 65 km and possibly as much as 95 km (20 to 30 kb) by variable but generally small degrees of partial melting. More voluminous hawaiite magmas originated at shallower depths by a somewhat greater degree of partial melting and were more substantially modified by crystal fractionation prior to extrusion. Magmas parental to the lava extrusions became increasingly divergent in composition with time, reflecting a broadening depth interval of partial melting in the mantle. Concurrent eruptive activity and block faulting generally shifted eastward with time at a rate of approximately 1 cm/yr. These time-space-composition variations, in combination with the observed essentially marginal localization of basaltic volcanism for the whole Basin and Range province, are explained in terms of upper mantle dynamics. We envisage upwelling mantle or plume activity beginning sometime in the middle to late Cenozoic in the core area of the Basin and Range province and causing progressive thinning or “erosion” of the lithosphere. Erosion ultimately produced a steep, keellike asthenosphere-lithosphere boundary beneath the Colorado Plateaus and the Basin and Range transition zone. Eastward-flowing mantle peridotite from the core of the plume was throttled against this keel, causing localized shear heating. This heat enhanced partial melting so that sufficient liquid was created to separate from the refractory residuum and to rise to the surface. Diapiric uprise of magma, or partially melted mantle in the uppermost mantle, or injection of a swarm of dikes into the lower crust, might have weakened and attenuated the overlying brittle crust, causing concurrent faulting. Eastward erosion of the keel and site of partial melting as time progressed allowed eruptive and fault activity to also migrate.


Journal of Volcanology and Geothermal Research | 2002

The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate

Larissa L Maughan; Eric H. Christiansen; Myron G. Best; C. Sherman Grommé; Alan L. Deino; David G. Tingey

Abstract Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km 3 ) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite–dacite–andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff – one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province – provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km 3 . It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north–south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe–Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63–71 wt% SiO 2 ) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit. The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere.


Geology | 1975

Migration of hydrous fluids in the upper mantle and potassium variation in calc-alkalic rocks

Myron G. Best

None of the existing explanations for increase in potassium in calc-alkalic rocks away from convergent plate boundaries is entirely satisfactory, and a new model is proposed for future testing based on a demonstrable mobility of incompatible constituents in the upper mantle. It is postulated that hydrous fluids derived from the descending oceanic crust migrate upward into the overlying wedge of mantle, thereby scavenging and zone melting potassium and other incompatible elements from peridotite during ascent. Progressively greater amounts of potassium are abstracted from increasingly thicker vertical sections of the mantle wedge. It is immaterial to the model whether the fluids are hydrous silicate melts derived by partial melting of the crust, which subsequently become calc-alkalic magma, or whether they are subsolidus aqueous solutions derived by dehydration of the crust, which eventually are assimilated by partial melts of the mantle and yield calc-alkalic magma. The scavenging-zone-melting process is an efficient mechanism for irreversible chemical differentiation of the upper mantle.


Geological Society of America Bulletin | 1997

Origin of broken phenocrysts in ash-flow tuffs

Myron G. Best; Eric H. Christiansen

Surprisingly little attention has been devoted to the textural nature of phenocrysts of feldspar and quartz in tuff. Although many geologists have briefly alluded to “broken” phenocrysts, none have addressed their origin in any detail. Petrographic study of 117 cooling units in the middle Tertiary ash-flow province of the Great Basin, United States, provides a basis for characterization of the shapes and for interpretation of the origin of felsic phenocrysts in ash-flow tuffs. Although not proven to be wholly ineffective, breakage of phenocrysts by mutual impact in the erupting magma and pyroclastic flow is doubtful for at least four reasons. First, the statistical probability of mutual collision between phenocrysts diminishes exponentially as their proportion to vitroclasts diminishes (e.g., only 1% probability for 10% phenocrysts); collision is less likely if pyroclasts move by laminar rather than turbulent flow. Second, the coating of glass and/or melt on the phenocrysts provides a cushion that absorbs the impact force. Third, plagioclases broken by impact in the laboratory have unusual shapes unlike those seen in Great Basin tuffs. Fourth, euhedral phenocrysts of feldspar are commonplace in many Great Basin tuffs, and in some they constitute a significant proportion of the phenocrysts, indicating that mutual impact does not modify all intratelluric crystals during explosive eruption. The two most populated categories of phenocryst shape in Great Basin tuffs probably correspond to what has been previously called “broken” phenocrysts. Somewhat less than half of the plagioclase and many sanidine phenocrysts are subhedral to anhedral. These are similar in shape, size, and composition to grains in polycrystalline aggregates within the same thin section. Kindred aggregates and discrete phenocrysts could have been derived from holocrystalline to partly crystalline material in the magma chamber that was disaggregated to varying extents during explosive eruption. More than half of the plagioclase and all of the quartz phenocrysts in Great Basin tuffs consist of irregularly shaped fragments with cuspate, embayed outlines, resembling pieces of a jigsaw puzzle, which we call phenoclasts. Inclusions of glass are common and are especially evident in larger, more or less whole crystals. Textural features of some phenocrysts in cognate pumice clasts in the tuffs reveal that they broke apart while still in the vesiculating but unfragmented magma. As the erupting magma decompressed, vesiculation of the melt that was entrapped at higher pressures as inclusions within the phenocrysts blew them apart, forming the phenoclasts. Shapes of felsic phenocrysts in volcanic rocks provide insight into their mode of emplacement. Euhedral phenocrysts are common in ash-flow tuffs as well as lava flows. Phenoclasts, however, are diagnostic of ash-flow tuffs, because they do not occur in Plinian ash-fall deposits and are rare in lava flows. These textural contrasts are useful for interpretation of generally older, but in any case altered and recrystallized, volcanic rocks. In such rocks, critical groundmass features and field relations that could provide clues to their origin have been obscured, but the shapes of relict phenocrysts are commonly well preserved.


International Geology Review | 2009

The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: insights from volcanic rocks

Myron G. Best; Deborah L. Barr; Eric H. Christiansen; Sherman Gromme; Alan L. Deino; David G. Tingey

Uncertainty surrounds the fate of the orogenic plateau in what is now the Great Basin in western Utah and Nevada, which resulted from the Mesozoic and earliest Cenozoic contractile deformations and crustal thickening. Although there is some consensus regarding the gravitational collapse of the plateau by extensional faulting and consequent crustal thinning, whether or not the plateau existed during the middle Cenozoic Great Basin ignimbrite flareup – one of the grandest expressions of continental volcanism in the geologic record – had remained in doubt. We use compositions of contemporaneous calc-alkaline lava flows as well as configurations of the ignimbrite sheets to show that the Great Basin area during the middle Cenozoic was a relatively smooth plateau underlain by unusually thick crust. We compare analyses of 376 intermediate-composition lava flows in the Great Basin that were extruded at 42–17 Ma with compositions of >6000 analyses of the late Cenozoic lava flows in continental volcanic arcs that correlate roughly with known crustal thickness. This comparison indicates that the middle Cenozoic Great Basin crust was much thicker than the present ca. 30 km thickness, likely as much as 60–70 km. If isostatic equilibrium prevailed, this unusually thick continental crust must have supported high topography. This high terrain in SE Nevada and SW Utah was progressively smoothed as successive ignimbrite outflow sheets were emplaced over areas currently as much as tens of thousands of square kilometres to aggregate thicknesses of as much as hundreds of metres. The generally small between-site variations in the palaeomagnetic directions of individual sheets lend further support for a relatively smooth landscape over which the sheets were draped. We conclude that during the middle Cenozoic, especially towards the close of the ignimbrite flareup, this Great Basin area was a relatively flat plateau, and because it was also high in elevation, we refer to it as an Altiplano. It was not unlike the present-day Altiplano-Puna in the tectonically similar central Andes, where an ignimbrite flareup comparable to that in the Great Basin occurred at ca. 9–3 Ma. Outflow ignimbrite sheets that were deposited from 35 to 23 Ma on the progressively smoothed Altiplano in south-eastern Nevada were derived from source calderas to the west. Of the 12 major sheets from seven sources, nine are distributed unevenly east of their sources while the remaining three sheets are spread about as far east as west of their sources. This eccentricity of sources near the western margin of 75% of the sheets indicates the existence of a NS-trending topographic barrier in central Nevada that restricted westward dispersal of ash flows. In a symmetric manner, eastward dispersal of ash flows from sources farther west seemed to have been impeded by this same topographic barrier. The westward dispersal was controlled in part by westward-draining stream valleys incised in the sloping flank of the Great Basin Altiplano in western Nevada and adjacent California; at least one of these ash flows travelled as far west as the western foothills of the Sierra Nevada. The nature and origin of the implied topographic barrier are uncertain. It is possible that heavy orographic precipitation on the western slope of the Altiplano and consequent focused denudation and isostatic uplift created a NS-trending topographic high at the crest of the western slope and facing the smoothed Altiplano to the east. The barrier also lies near and essentially parallel to the buried western edge of the Precambrian basement and to a zone of thermal-diapiric domes that were spawned in thickened crust as the basement edge was overrun by late Palaeozoic–Mesozoic thrust sheets.


Geosphere | 2013

Introduction: The 36–18 Ma southern Great Basin, USA, ignimbrite province and flareup: Swarms of subduction-related supervolcanoes

Myron G. Best; Eric H. Christiansen; Sherman Gromme

During the middle Cenozoic, from 36 to 18 Ma, one of the greatest global expressions of long-lived, explosive silicic volcanism affected a large segment of southwestern North America, including central Nevada and southwestern Utah in the southern Great Basin. The southern Great Basin ignimbrite province, resulting from this flareup, harbors several tens of thousands of cubic kilometers of ash-flow deposits. They were created by more than two hundred explosive eruptions, at least thirty of which were super-eruptions of more than 1000 km 3 . Forty-two exposed calderas are as much as 60 km in diameter. As in other parts of southwestern North America affected by the ignimbrite flareup, rhyolite ash-flow tuffs are widespread throughout the southern Great Basin ignimbrite province. However, the province differs in two significant respects. First, extrusions of contemporaneous andesitic lavas were minimal. Their volume is only about 10% of the ignimbrite volume. Unlike other contemporaneous volcanic fields in southwestern North America, only a few major composite (strato-) volcanoes predated and developed during the flareup. Second, the central sector and especially the eastern sector of the province experienced super-eruptions of relatively uniform, crystal-rich dacite magmas; resulting deposits of these monotonous intermediates measure on the order of 16,000 km 3 . Following this 4 m.y. event, very large volumes of unusually hot and dry trachydacitic magmas were erupted. These two types of magmas and their erupted volumes are apparently without parallel in the middle Cenozoic of southwestern North America. A fundamental goal of this themed issue is to present basic stratigraphic, compositional, chronologic, and paleomagnetic data on the unusually plentiful and voluminous ignimbrites in the southern Great Basin ignimbrite province. These data permit rigorous correlations of the vast outflow sheets that span between mountain-range exposures across intervening valleys as well as correlation of the sheets with often-dissimilar accumulations of tuff within dismembered source calderas. Well-exposed collar zones of larger calderas reveal complex wall-collapse breccias. Calculated ignimbrite dimensions in concert with precise 40 Ar/ 39 Ar ages provide insights on the growth and longevity of the colossal crustal magma systems. Exactly how these subduction-related magma systems were sustained for millions of years to create multicyclic super-eruptions at a particular focus remains largely unanswered. What factors created eruptive episodes lasting millions of years separated by shorter intervals of inactivity? What might have been the role played by tears in the subducting plate focusing a high rate of mantle magma flux into the crust? What role might have been played by an unusually thick and still-warm crust inherited from earlier orogenies? Are the numerous super-eruptions, especially of the unusual monotonous intermediates and succeeding trachydacitic eruptions, during the Great Basin ignimbrite flareup simply a result of the coupling effect of high mantle-magma flux and a thick crust, or did other factors play a role?


Geology | 1989

Paleostress history of the Basin and Range province in western Utah and eastern Nevada from healed microfracture orientations in granites

Xiaofen Ren; Myron G. Best

Healed microfractures in quartz grains in 14 to 169 Ma granites from the Basin and Range province in western Utah and eastern Nevada record a history of paleostress. The microfracture data are in good agreement with the orientations of paleostresses determined for this same region by using orientations of dikes emplaced into only slightly older igneous host rocks. Samples generally have two or three steeply dipping microfracture sets. One set is related to the tectonic stress field at the time of magma emplacement. It strikes northeast-southwest in 31-169 Ma samples and east-northeast-west-southwest in 25-30 Ma samples, rotates to east-west by about 22 Ma, and strikes northwest-southeast in the youngest samples (about 14 Ma). Plutons younger than about 14 Ma are not exposed at the surface in western Utah and eastern Nevada. Other crack sets in the samples could have formed during cooling of the pluton, during a post cooling regional thermal or tectonic event, or during some local stress event. A strong north-south trend in these other crack sets may suggest a formation during Basin and Range extension.


Geological Society of America Bulletin | 1974

Mica Granites of the Kern Mountains Pluton, Eastern White Pine County, Nevada: Remobilized Basement of the Cordilleran Miogeosyncline?

Myron G. Best; Richard Lee Armstrong; William C. Graustein; G.F. Embree; Robert C. Ahlborn

Among the many granitic plutons within the Basin and Range province of western North America, those in the Kern Mountains of eastern Nevada and western Utah are unusual structurally, mineralogically, and chemically. The two largest intrusions, which together are exposed over an area of 130 sq km (51 sq mi), have well-defined border facies of leucocratic and generally aplitic rocks, or of protoclastic rock developed from coarser core-facies material. Within the core facies are abundant aplitic, leucocratic dikes. The core facies of the larger intrusion (Tungstonia Granite) is a two-mica granite with conspicuous phenocrystic books of muscovite up to 5 cm across. The smaller intrusion (Skinner Canyon Granite) lacks muscovite, and Fe-Ti oxides and sphene are constant accessory phases in it. Rb-Sr and K-Ar isotopic analyses suggest a wide range of initial Sr 87 /Sr 86 ratios, which for the most part are unusually high—to nearly 0.7246 for the Tungstonia Granite—and a complex, protracted period of magmatism and isotopic adjustment that extended from possibly Mesozoic into mid-Cenozoic time. The simplest interpretation is that the final emplacement of the Tungstonia body occurred 60 m.y. ago and that the Skinner Canyon intrusion occurred between 30 and 45 m.y. ago. The data prompt the conclusion that the magmas represent remobilized sialic basement whose model dates (assuming an initial ratio typical for mantle-derived magmas) are in excess of 1.5 b.y. The occurrence of such anatectic intrusions within the relatively intensely metamorphosed parts of the infrastructure of the Sevier orogenic belt, rather than elsewhere in the Basin and Range province, is not unexpected, and it possibly represents a more advanced evolutionary stage than do the gneiss domes previously documented within this same belt.


Geosphere | 2013

The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions

Myron G. Best; Eric H. Christiansen; Alan L. Deino; Sherman Gromme; Garret L. Hart; David G. Tingey

The Indian Peak–Caliente caldera complex and its surrounding ignimbrite field were a major focus of explosive silicic activity in the eastern sector of the subduction-related southern Great Basin ignimbrite province during the middle Cenozoic (36–18 Ma) ignimbrite flareup. Caldera-forming activity migrated southward through time in response to rollback of the subducting lithosphere. Nine partly exposed, separate to partly overlapping source calderas and an equal number of concealed sources compose the Indian Peak–Caliente caldera complex. Calderas have diameters to as much as 60 km and are filled with as much as 5000 m of intracaldera tuff and wall-collapse breccias. More than 50 ignimbrite cooling units, including 22 of regional (>100 km 3 ) extent, are distinguished on the basis of stratigraphic position, chemical and modal composition, 40 Ar/ 39 Ar age, and paleomagnetic direction. The most voluminous ash flows spread as far as 150 km from the caldera complex across a high plateau of limited relief—the Great Basin altiplano, which was created by late Paleozoic through Mesozoic orogenic deformation and crustal thickening. The resulting ignimbrite field covers a present area of ∼60,000 km 2 in east-central Nevada and southwestern Utah. Before post-volcanic extension, ignimbrites had an estimated aggregate volume of ∼33,000 km 3 . At least seven of the largest cooling units were produced by super-eruptions of more than 1000 km 3 . The largest, at 5900 km 3 , originally covered an area of 32,000 km 2 to outflow depths of hundreds of meters. Outflow ignimbrite sequences comprise as many as several cooling units from different sources with an aggregate thickness locally reaching a kilometer; sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances, thus manifesting a lack of synvolcanic crustal extension. Fallout ash in the mid-continent is associated with two of the super-eruptions. Ignimbrites are mostly calc-alkalic and high-K, a reflection of the unusually thick crust in which the magmas were created. They have a typical arc chemical signature and define a spectrum of compositions that ranges from high-silica (78 wt%) rhyolite to andesite (61 wt% silica). Rhyolite magmas were erupted in relatively small volumes more or less throughout the history of activity, but in a much larger volume after 24 Ma in the southern part of the caldera complex, creating ∼10,000 km 3 of ignimbrite. The field has some rhyolite ignimbrites, the largest of which are in the south and were emplaced after 24 Ma. But the most distinctive attributes of the Indian Peak–Caliente field are two distinct classes of ignimbrite: 1. Super-eruptive monotonous intermediates. More or less uniform and unzoned deposits of dacitic ignimbrite that are phenocryst rich (to as much as ∼50%) with plagioclase > biotite ≈ quartz ≈ hornblende > Fe-Ti oxides ± sanidine, pyroxene, and titanite; apatite and zircon are ubiquitous accessory phases. These tuffs were deposited at 31.13, 30.06, and 29.20 Ma in volumes of 2000, 5900, and 4400 km 3 , respectively, from overlapping, multicyclic calderas. A unique, and possibly kindred, phenocryst-rich latite-andesite ignimbrite with an outflow volume of 1100 km 3 was erupted at 22.56 Ma from a concealed source caldera to the south. 2. Trachydacitic Isom-type tuffs. Also relatively uniform but phenocryst poor ( > clinopyroxene ≈ orthopyroxene ≈ Fe-Ti oxides >> apatite. These alkali-calcic tuffs are enriched in TiO 2 , K 2 O, P 2 O 5 , Ba, Nb, and Zr and depleted in CaO, MgO, Ni, and Cr, and have an arc chemical signature. Magmas were erupted from a concealed source immediately after and just to the southeast of the multicyclic monotonous intermediates. Most of their aggregate outflow volume of 1800 km 3 was erupted from 27.90 to 27.25 Ma. Nothing like this couplet of distinct ignimbrites, in such volumes, have been documented in other middle Cenozoic volcanic fields in the southwestern U.S. where the ignimbrite flareup is manifest. Magmas were created in unusually thick crust (as thick as 70 km) where large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. Dacite and some rhyolite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that were a couple of log units more oxidized than the quartz-fayalite-magnetite (QFM) oxygen buffer at depths of ∼8–12 km. In contrast to these “main-trend” magmas, trachydacitic Isom-type magmas were derived from drier and hotter (∼950 °C) magmas originating deeper in the crust (to as deep as 30 km) by fractionation processes in andesitic differentiates of the mantle magma. “Off-trend” rhyolitic magmas that are both younger and older than the Isom type but possessed some of their same chemical characteristics possibly reflect an ancestry involving Isom-type magmas as well as main-trend rhyolitic magmas. Andesitic lavas extruded during the flare up but mostly after 25 Ma constitute a roughly estimated 12% of the volume of silicic ignimbrite, in contrast to major volcanic fields to the east, e.g., the Southern Rocky Mountain field, where the volume of intermediate-composition lavas exceeds that of silicic ignimbrites.

Collaboration


Dive into the Myron G. Best's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Deino

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar

Sherman Gromme

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

C. Sherman Grommé

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Garret L. Hart

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan M. Deino

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Lux

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge