Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sherman Gromme is active.

Publication


Featured researches published by Sherman Gromme.


Earth and Planetary Science Letters | 1972

Paleomagnetism of Midway Atoll lavas and northward movement of the Pacific plate

Sherman Gromme; F.J. Vine

Abstract Two deep drill holes through the reef limestones of Midway Atoll penetrated 120 m and 19 m of basaltic lavas that were dated by the K Ar method at 18 my. Inclinations of natural remanent magnetization have been measured in 173 specimens cut from 57 core samples from 13 of the lava flows. The mean paleomagnetic inclination is27.6° ± 6.8°, corresponding to a paleolatitude of14.7° ± 4.2°. The present latitude of Midway is 28°, suggesting a northward component of motion of the Pacific plate of approximately 13° or 1400 km in the last 18 my. The paleolatitude of Midway is thus not significantly different from the present latitude (19°) of the active volcanic island of Hawaii. The paleomagnetic data from the Midway basalts thus support the hypothesis of Wilson and Morgan that volcanic heat sources are fixed with respect to the Earths mantle below the asthenosphere and their apparent migration with time is due to plate motion.


International Geology Review | 2009

The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: insights from volcanic rocks

Myron G. Best; Deborah L. Barr; Eric H. Christiansen; Sherman Gromme; Alan L. Deino; David G. Tingey

Uncertainty surrounds the fate of the orogenic plateau in what is now the Great Basin in western Utah and Nevada, which resulted from the Mesozoic and earliest Cenozoic contractile deformations and crustal thickening. Although there is some consensus regarding the gravitational collapse of the plateau by extensional faulting and consequent crustal thinning, whether or not the plateau existed during the middle Cenozoic Great Basin ignimbrite flareup – one of the grandest expressions of continental volcanism in the geologic record – had remained in doubt. We use compositions of contemporaneous calc-alkaline lava flows as well as configurations of the ignimbrite sheets to show that the Great Basin area during the middle Cenozoic was a relatively smooth plateau underlain by unusually thick crust. We compare analyses of 376 intermediate-composition lava flows in the Great Basin that were extruded at 42–17 Ma with compositions of >6000 analyses of the late Cenozoic lava flows in continental volcanic arcs that correlate roughly with known crustal thickness. This comparison indicates that the middle Cenozoic Great Basin crust was much thicker than the present ca. 30 km thickness, likely as much as 60–70 km. If isostatic equilibrium prevailed, this unusually thick continental crust must have supported high topography. This high terrain in SE Nevada and SW Utah was progressively smoothed as successive ignimbrite outflow sheets were emplaced over areas currently as much as tens of thousands of square kilometres to aggregate thicknesses of as much as hundreds of metres. The generally small between-site variations in the palaeomagnetic directions of individual sheets lend further support for a relatively smooth landscape over which the sheets were draped. We conclude that during the middle Cenozoic, especially towards the close of the ignimbrite flareup, this Great Basin area was a relatively flat plateau, and because it was also high in elevation, we refer to it as an Altiplano. It was not unlike the present-day Altiplano-Puna in the tectonically similar central Andes, where an ignimbrite flareup comparable to that in the Great Basin occurred at ca. 9–3 Ma. Outflow ignimbrite sheets that were deposited from 35 to 23 Ma on the progressively smoothed Altiplano in south-eastern Nevada were derived from source calderas to the west. Of the 12 major sheets from seven sources, nine are distributed unevenly east of their sources while the remaining three sheets are spread about as far east as west of their sources. This eccentricity of sources near the western margin of 75% of the sheets indicates the existence of a NS-trending topographic barrier in central Nevada that restricted westward dispersal of ash flows. In a symmetric manner, eastward dispersal of ash flows from sources farther west seemed to have been impeded by this same topographic barrier. The westward dispersal was controlled in part by westward-draining stream valleys incised in the sloping flank of the Great Basin Altiplano in western Nevada and adjacent California; at least one of these ash flows travelled as far west as the western foothills of the Sierra Nevada. The nature and origin of the implied topographic barrier are uncertain. It is possible that heavy orographic precipitation on the western slope of the Altiplano and consequent focused denudation and isostatic uplift created a NS-trending topographic high at the crest of the western slope and facing the smoothed Altiplano to the east. The barrier also lies near and essentially parallel to the buried western edge of the Precambrian basement and to a zone of thermal-diapiric domes that were spawned in thickened crust as the basement edge was overrun by late Palaeozoic–Mesozoic thrust sheets.


Geosphere | 2013

Introduction: The 36–18 Ma southern Great Basin, USA, ignimbrite province and flareup: Swarms of subduction-related supervolcanoes

Myron G. Best; Eric H. Christiansen; Sherman Gromme

During the middle Cenozoic, from 36 to 18 Ma, one of the greatest global expressions of long-lived, explosive silicic volcanism affected a large segment of southwestern North America, including central Nevada and southwestern Utah in the southern Great Basin. The southern Great Basin ignimbrite province, resulting from this flareup, harbors several tens of thousands of cubic kilometers of ash-flow deposits. They were created by more than two hundred explosive eruptions, at least thirty of which were super-eruptions of more than 1000 km 3 . Forty-two exposed calderas are as much as 60 km in diameter. As in other parts of southwestern North America affected by the ignimbrite flareup, rhyolite ash-flow tuffs are widespread throughout the southern Great Basin ignimbrite province. However, the province differs in two significant respects. First, extrusions of contemporaneous andesitic lavas were minimal. Their volume is only about 10% of the ignimbrite volume. Unlike other contemporaneous volcanic fields in southwestern North America, only a few major composite (strato-) volcanoes predated and developed during the flareup. Second, the central sector and especially the eastern sector of the province experienced super-eruptions of relatively uniform, crystal-rich dacite magmas; resulting deposits of these monotonous intermediates measure on the order of 16,000 km 3 . Following this 4 m.y. event, very large volumes of unusually hot and dry trachydacitic magmas were erupted. These two types of magmas and their erupted volumes are apparently without parallel in the middle Cenozoic of southwestern North America. A fundamental goal of this themed issue is to present basic stratigraphic, compositional, chronologic, and paleomagnetic data on the unusually plentiful and voluminous ignimbrites in the southern Great Basin ignimbrite province. These data permit rigorous correlations of the vast outflow sheets that span between mountain-range exposures across intervening valleys as well as correlation of the sheets with often-dissimilar accumulations of tuff within dismembered source calderas. Well-exposed collar zones of larger calderas reveal complex wall-collapse breccias. Calculated ignimbrite dimensions in concert with precise 40 Ar/ 39 Ar ages provide insights on the growth and longevity of the colossal crustal magma systems. Exactly how these subduction-related magma systems were sustained for millions of years to create multicyclic super-eruptions at a particular focus remains largely unanswered. What factors created eruptive episodes lasting millions of years separated by shorter intervals of inactivity? What might have been the role played by tears in the subducting plate focusing a high rate of mantle magma flux into the crust? What role might have been played by an unusually thick and still-warm crust inherited from earlier orogenies? Are the numerous super-eruptions, especially of the unusual monotonous intermediates and succeeding trachydacitic eruptions, during the Great Basin ignimbrite flareup simply a result of the coupling effect of high mantle-magma flux and a thick crust, or did other factors play a role?


Tectonics | 1995

Paleomagnetism, magnetic anisotropy, and mid‐Cretaceous paleolatitude of the Duke Island (Alaska) ultramafic complex

Scott W. Bogue; Sherman Gromme; John W. Hillhouse

We report paleomagnetic results from layered igneous rocks that imply substantial post mid-Cretaceous poleward motion of the Insular superterrane (western Canadian Cordillera and southeast Alaska) relative to North America. The samples studied are from the stratiform zoned ultramafic body at Duke Island, which intruded rocks of the Alexander terrane at the south end of the southeastern Alaska archipelago at about 110 Ma. Thermal and alternating field demagnetization experiments show that the characteristic remanence of the ultramafic rocks has high coercivity and a narrow unblocking temperature range just below the Curie temperature of magnetite. This remanence is likely carried by low-Ti titanomagnetite exsolved within clinopyroxene and perhaps other silicate hosts. The Duke Island intrusion exhibits a well-developed gravitational layering that was deformed during initial cooling (but below 540°C) into folds that plunge moderately to the west-southwest. The characteristic remanence clearly predates this early folding and is therefore primary; the Fisher parameter describing the concentration of the overall mean remanence direction improves from 3 to 32 when the site-mean directions are corrected by restoring the layering to estimated paleohorizontal. All samples exhibit a magnetic anisotropy that is strong but nonuniform in orientation across the intrusion, and we show that it has no significant or systematic effect on the site-mean directions of remanence. At least some of the anisotropy derives from secondary magnetite formed during partial serpentinization. The mean paleomagnetic inclination (56°±10°) corroborates paleomagnetic results from five coeval silicic plutons of the Canadian Coast Plutonic Complex to the south and southeast and implies 3000 km (±1300 km) of poleward transport relative to the North American craton. Between mid-Cretaceous and middle Eocene time, the Insular superterrane and Coast Plutonic Complex shared a common paleolatitude history, with more poleward transport than coeval inboard terranes.


International Geology Review | 1994

Paleomagnetism of the Siberian Flood Basalts of the Noril'sk Area: A Constraint on Eruption Duration

Edward N. Lind; Sergey V. Kropotov; Gerald K. Czamanske; Sherman Gromme; Valeriy A. Fedorenko

The volcanic sequence of the Norilsk area, northern Siberia, provides the most complete section of early Siberian flood-basalt volcanism. Paleomagnetic measurements for more than 4000 samples of lava and tuff indicate that nearly all of this >3500-m-thick sequence was laid down during one interval of normal magnetic polarity. Lavas of the lower third of this sequence are cut by the ore-bearing Norilsk-I intrusion, which has an age of 251 Ma, identical to that of the Permian-Triassic boundary. Thus, the normal-polarity interval represented by this sequence is inferred to be the first of the Triassic Period. Eruption of this enormous volume of material in a relatively brief period coincident with the earths greatest mass extinction requires that all aspects of Siberian flood-basalt volcanism be evaluated carefully as possibly contributing to that catastrophe.


Geosphere | 2013

The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions

Myron G. Best; Eric H. Christiansen; Alan L. Deino; Sherman Gromme; Garret L. Hart; David G. Tingey

The Indian Peak–Caliente caldera complex and its surrounding ignimbrite field were a major focus of explosive silicic activity in the eastern sector of the subduction-related southern Great Basin ignimbrite province during the middle Cenozoic (36–18 Ma) ignimbrite flareup. Caldera-forming activity migrated southward through time in response to rollback of the subducting lithosphere. Nine partly exposed, separate to partly overlapping source calderas and an equal number of concealed sources compose the Indian Peak–Caliente caldera complex. Calderas have diameters to as much as 60 km and are filled with as much as 5000 m of intracaldera tuff and wall-collapse breccias. More than 50 ignimbrite cooling units, including 22 of regional (>100 km 3 ) extent, are distinguished on the basis of stratigraphic position, chemical and modal composition, 40 Ar/ 39 Ar age, and paleomagnetic direction. The most voluminous ash flows spread as far as 150 km from the caldera complex across a high plateau of limited relief—the Great Basin altiplano, which was created by late Paleozoic through Mesozoic orogenic deformation and crustal thickening. The resulting ignimbrite field covers a present area of ∼60,000 km 2 in east-central Nevada and southwestern Utah. Before post-volcanic extension, ignimbrites had an estimated aggregate volume of ∼33,000 km 3 . At least seven of the largest cooling units were produced by super-eruptions of more than 1000 km 3 . The largest, at 5900 km 3 , originally covered an area of 32,000 km 2 to outflow depths of hundreds of meters. Outflow ignimbrite sequences comprise as many as several cooling units from different sources with an aggregate thickness locally reaching a kilometer; sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances, thus manifesting a lack of synvolcanic crustal extension. Fallout ash in the mid-continent is associated with two of the super-eruptions. Ignimbrites are mostly calc-alkalic and high-K, a reflection of the unusually thick crust in which the magmas were created. They have a typical arc chemical signature and define a spectrum of compositions that ranges from high-silica (78 wt%) rhyolite to andesite (61 wt% silica). Rhyolite magmas were erupted in relatively small volumes more or less throughout the history of activity, but in a much larger volume after 24 Ma in the southern part of the caldera complex, creating ∼10,000 km 3 of ignimbrite. The field has some rhyolite ignimbrites, the largest of which are in the south and were emplaced after 24 Ma. But the most distinctive attributes of the Indian Peak–Caliente field are two distinct classes of ignimbrite: 1. Super-eruptive monotonous intermediates. More or less uniform and unzoned deposits of dacitic ignimbrite that are phenocryst rich (to as much as ∼50%) with plagioclase > biotite ≈ quartz ≈ hornblende > Fe-Ti oxides ± sanidine, pyroxene, and titanite; apatite and zircon are ubiquitous accessory phases. These tuffs were deposited at 31.13, 30.06, and 29.20 Ma in volumes of 2000, 5900, and 4400 km 3 , respectively, from overlapping, multicyclic calderas. A unique, and possibly kindred, phenocryst-rich latite-andesite ignimbrite with an outflow volume of 1100 km 3 was erupted at 22.56 Ma from a concealed source caldera to the south. 2. Trachydacitic Isom-type tuffs. Also relatively uniform but phenocryst poor ( > clinopyroxene ≈ orthopyroxene ≈ Fe-Ti oxides >> apatite. These alkali-calcic tuffs are enriched in TiO 2 , K 2 O, P 2 O 5 , Ba, Nb, and Zr and depleted in CaO, MgO, Ni, and Cr, and have an arc chemical signature. Magmas were erupted from a concealed source immediately after and just to the southeast of the multicyclic monotonous intermediates. Most of their aggregate outflow volume of 1800 km 3 was erupted from 27.90 to 27.25 Ma. Nothing like this couplet of distinct ignimbrites, in such volumes, have been documented in other middle Cenozoic volcanic fields in the southwestern U.S. where the ignimbrite flareup is manifest. Magmas were created in unusually thick crust (as thick as 70 km) where large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. Dacite and some rhyolite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that were a couple of log units more oxidized than the quartz-fayalite-magnetite (QFM) oxygen buffer at depths of ∼8–12 km. In contrast to these “main-trend” magmas, trachydacitic Isom-type magmas were derived from drier and hotter (∼950 °C) magmas originating deeper in the crust (to as deep as 30 km) by fractionation processes in andesitic differentiates of the mantle magma. “Off-trend” rhyolitic magmas that are both younger and older than the Isom type but possessed some of their same chemical characteristics possibly reflect an ancestry involving Isom-type magmas as well as main-trend rhyolitic magmas. Andesitic lavas extruded during the flare up but mostly after 25 Ma constitute a roughly estimated 12% of the volume of silicic ignimbrite, in contrast to major volcanic fields to the east, e.g., the Southern Rocky Mountain field, where the volume of intermediate-composition lavas exceeds that of silicic ignimbrites.


Geosphere | 2007

Stratigraphy, paleomagnetism, and anisotropy of magnetic susceptibility of the Miocene Stanislaus Group, central Sierra Nevada and Sweetwater Mountains, California and Nevada

Nathan M. King; John W. Hillhouse; Sherman Gromme; Brian P. Hausback; Christopher J. Pluhar

Paleomagnetism and anisotropy of magnetic susceptibility (AMS) reveal pyroclastic flow patterns, stratigraphic correlations, and tectonic rotations in the Miocene Stanislaus Group, an extensive volcanic sequence in the central Sierra Nevada, California, and in the Walker Lane of California and Nevada. The Stanislaus Group (Table Mountain Latite, Eureka Valley Tuff, and the Dardanelles Formation) is a useful stratigraphic marker for understanding the post–9-Ma major faulting of the easternmost Sierra Nevada, uplift of the mountain range, and transtensional tectonics within the central Walker Lane. The Table Mountain Latite has a distinctively shallow reversed-polarity direction (I = −26.1°, D = 163.1°, and α 95 = 2.7°) at sampling sites in the foothills and western slope of the Sierra Nevada. In ascending order, the Eureka Valley Tuff comprises the Tollhouse Flat Member (I = −62.8°, D = 159.9°, α 95 = 2.6°), By-Day Member (I = 52.4°, D = 8.6°, α 95 = 7.2°), and Upper Member (I = 27.9°, D = 358.0°, α 95 = 10.4°). The Dardanelles Formation has normal polarity. From the magnetization directions of the Eureka Valley Tuff in the central Walker Lane north of Mono Lake and in the Anchorite Hills, we infer clockwise, vertical-axis rotations of ∼10° to 26° to be a consequence of dextral shear. The AMS results from 19 sites generally show that the Eureka Valley Tuff flowed outward from its proposed source area, the Little Walker Caldera, although several indicators are transverse to radial flow. AMS-derived flow patterns are consistent with mapped channels in the Sierra Nevada and Walker Lane.


Geosphere | 2013

The 36–18 Ma Central Nevada ignimbrite field and calderas, Great Basin, USA: Multicyclic super-eruptions

Myron G. Best; Sherman Gromme; Alan L. Deino; Eric H. Christiansen; Garret L. Hart; David G. Tingey

One of the greatest global manifestations of explosive silicic volcanism in the terrestrial rock record occurred during the middle Cenozoic over a large part of southwestern North America, from the Great Basin of Nevada and western Utah into Colorado, Arizona, New Mexico, and Mexico. This subduction-related ignimbrite flareup is the only one known in the world of its magnitude and of Mesozoic or Cenozoic age that is not related to continental breakup. The southern Great Basin ignimbrite province was a major product of the flareup . Its central and eastern sectors developed on the Great Basin altiplano, a high orogenic plateau of limited relief dating from pulses of late Paleozoic through Mesozoic orogenic contractile deformation. Caldera-forming activity migrated southwestward through time in response to rollback of a once-flat slab of subducting lithosphere. In the central sector of the southern Great Basin ignimbrite province, 11 partly exposed, mostly overlapping source calderas and one concealed source comprise the 36–18 Ma Central Nevada caldera complex. Calderas have diameters as much as 50 km, to possibly 80 km. Intracaldera tuff and intercalated wall-collapse breccia are at least 2000 m thick. Surrounding outflow ignimbrites consist of 17 regional cooling units (>200 km 3 ) that have been correlated over two or more mountain ranges on the basis of stratigraphic position, paleomagnetic direction, chemical and modal composition, and 40 Ar/ 39 Ar age. Many additional smaller cooling units have been recognized. Possibly as many as eight of the ignimbrites resulted from super-eruptions of 1000 km 3 to as much as 4800 km 3 . This Central Nevada ignimbrite field is presently exposed over an area of ∼65,000 km 2 in south-central Nevada and had a volume of 25,000 km 3 corrected for post-volcanic crustal extension. Six of the largest eruptions broadcast ash flows over an extension-corrected area of greater than 16,000 km 2 and as much as 160 km from their caldera sources. Individual sections of outflow tuff include as many as 14 ignimbrite cooling units; aggregate thicknesses locally reach a kilometer, and stacks a few hundred meters thick are common. Sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances that would testify to synvolcanic crustal extension. Beds of fallout ash a few meters thick associated with the largest eruption have been recognized in the mid-continent of the U.S. Six caldera-forming eruptive episodes are separated by five lulls in activity, each lasting from 1.7 to 4.4 m.y., during which time little ( 3 ) or no ignimbrite was deposited. Some of the longer lulls that preceded the most voluminous eruptions likely reflected the time for accumulation of magma in huge shallow chambers before eruption was triggered. Other long lulls preceded the last two, single eruptions as the arc magma-generating system was waning prior to the transition to non-arc magma production to the south in the Southwestern Nevada volcanic field. Central Nevada ignimbrites are mostly calc-alkalic and high-K with trace element patterns typical of subduction-related arcs; they range from high-silica (78 wt%) rhyolite to low-silica (63 wt%) dacite. Most ignimbrites are rhyolite, from the earliest to the latest eruptions in the field, and most of these are phenocryst rich. The largest ignimbrite (4800 km 3 ), emplaced at 31.69 Ma, is a phenocryst-rich, normally zoned rhyolite-dacite. Three monotonous intermediate cooling units of relatively uniform phenocryst-rich dacite were erupted in rapid succession at 27.57 Ma; they have an estimated aggregate volume of 4500 km 3 . These “main-trend” rhyolite and dacite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that equilibrated a couple of log units more oxidized than the QFM (quartz-fayalite-magnetite) oxygen buffer with an assemblage of plagioclase, sanidine, quartz, biotite, Fe-Ti oxides, zircon, and apatite with or without hornblende, pyroxene, and titanite at depths of ∼8–12 km. Magmas were created in unusually thick crust (∼60 km) as large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. “Off-trend” ignimbrites include cooling units of the 600 km 3 trachydacitic Isom-type tuffs that contain sparse phenocrysts of plagioclase, clino- and ortho-pyroxene, and Fe-Ti oxides derived from drier and hotter magmas. These magmas erupted immediately after the monotonous intermediates, from ca. 27 to 23 Ma, and were derived by fractionation from andesitic differentiates of the mantle-derived magmas in the deeper crust. Younger, off-trend rhyolitic magmas possessed some of the same unusually high TiO 2 , K 2 O, Zr, and Ba contents as those of the Isom type and may be rhyolitic differentiates of Isom-type trachydacites or rhyolitic melts contaminated with Isom-type magma. The distinctive couplet of monotonous intermediates and trachydacitic Isom-type tuffs in the Central Nevada field is found in much greater volume in the coeval Indian Peak–Caliente field to the east, where monotonous intermediates have an extension corrected volume of 12,300 km 3 and Isom-type tuffs have a volume of 4200 km 3 . However, in the rhyolite-dominant Western Nevada field to the west, monotonous intermediates have not been recognized and trachydacitic Isom-type tuffs occur in only very small volumes, probably no more than 50 km 3 total. These composition-volume contrasts appear to be related to the crustal thickness that diminished westward during the middle Cenozoic ignimbrite flareup. The distinctive couplet of ignimbrites has not been recognized elsewhere, to our knowledge, in the flareup fields in southwestern North America. Extrusion of intermediate-composition lavas at the inception of the ignimbrite flare up in the northeastern part of the Central Nevada field created large lava piles. Later extrusions from 33 to 24 Ma were virtually absent but modest activity resumed thereafter and persisted until the end of the ignimbrite flareup. All together, the volume of andesitic lava is less than one-tenth the volume of contemporaneous silicic ignimbrite; like proportions occur in the ignimbrite fields to the west and east in the southern Great Basin ignimbrite province. This small proportion, together with the absence of basalt lavas, reflects the unusually thick crust in which silicic magmas were being generated during the ignimbrite flareup. In sharp contrast, flareups in volcanic fields elsewhere in the southwestern U.S. resulted in subordinate ignimbrite relative to lavas.


Lithosphere | 2011

Updated paleomagnetic pole from Cretaceous plutonic rocks of the Sierra Nevada, California: Tectonic displacement of the Sierra Nevada block

John W. Hillhouse; Sherman Gromme

We report remanent magnetization measurements from 13 sites in Cretaceous plutonic rocks in the northern Sierra Nevada (38°N–39.5°N). By increasing the number of available paleomagnetic sites, the new data tighten constraints on the displacement history of the Sierra Nevada block and its pre-extensional position relative to interior North America. We collected samples in freshly exposed outcrops along four highway transects. The rocks include diorite, granodiorite, and tonalite with potassium-argon ages (hornblende) ranging from 100 Ma to 83 Ma. By combining our results with previous paleomagnetic determinations from the central and southern Sierra Nevada (excluding sites from the rotated southern tip east of the White Wolf–Kern Canyon fault system), we find a mean paleomagnetic pole of 70.5°N, 188.2°E, A 95 = 2.6° ( N = 26, Fisher concentration parameter, K = 118). Thermal demagnetization indicates that the characteristic remanence is generally unblocked in a narrow range within 35 °C of the Curie temperature of pure magnetite. Small apparent polar wander during the Cretaceous normal-polarity superchron, plus prolonged acquisition of remanence at the site level, may account for the low dispersion of virtual geomagnetic poles and relatively large K value. Tilt estimates based on overlapping sediments, stream gradients, and thermochronology of the Sierra Nevada plutons vary from 0° to 3° down to the southwest. Without tilt correction, the mean paleomagnetic pole for the Sierra Nevada is essentially coincident with the North American reference pole during the Cretaceous stillstand (125 Ma to 80 Ma). At 95% confidence, the apparent latitude shift is 1.1° ± 3.0° (positive northward), and the apparent rotation is negligible, 0.0° ± 4.7°. Correcting for each degree of tilt, which is limited to 3° on geologic evidence, increases the rotation anomaly 2.2° counterclockwise, while the apparent latitude shift remains unchanged.


Journal of Geophysical Research | 1978

Geomagnetic paleointensities from radiocarbon‐dated lava flows on Hawaii and the question of the Pacific nondipole low

Robert S. Coe; Sherman Gromme; Edward A. Mankinen

Collaboration


Dive into the Sherman Gromme's collaboration.

Top Co-Authors

Avatar

Edward A. Mankinen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Myron G. Best

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Michel Prévot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Deino

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Hillhouse

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert S. Coe

University of California

View shared research outputs
Top Co-Authors

Avatar

Garret L. Hart

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge