Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myung-Hee Y. Kim is active.

Publication


Featured researches published by Myung-Hee Y. Kim.


Science | 2014

Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover

Donald M. Hassler; C. Zeitlin; Robert F. Wimmer-Schweingruber; Bent Ehresmann; Scot C. Randell Rafkin; Jennifer L. Eigenbrode; David E. Brinza; Gerald Weigle; Stephan Böttcher; Eckart Böhm; Soenke Burmeister; Jingnan Guo; Jan Köhler; Cesar Martin; Guenther Reitz; Francis A. Cucinotta; Myung-Hee Y. Kim; David Harry Grinspoon; Mark A. Bullock; Arik Posner; Javier Gómez-Elvira; Ashwin R. Vasavada; John P. Grotzinger

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.


Radiation Research | 2008

Physical and Biological Organ Dosimetry Analysis for International Space Station Astronauts

Francis A. Cucinotta; Myung-Hee Y. Kim; Veronica Willingham; K. George

Abstract Cucinotta, F. A., Kim, M-H. Y., Willingham, V. and George, K. A. Physical and Biological Organ Dosimetry Analysis for International Space Station Astronauts. Radiat. Res. 170, 127–138 (2008). In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to γ rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASAs space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a ±10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized.


Radiation Measurements | 1999

Shielding from solar particle event exposures in deep space

John W. Wilson; F. A. Cucinotta; Judy L. Shinn; Lisa C. Simonsen; Rajendra R. Dubey; W.R Jordan; T. D. Jones; C. K. Chang; Myung-Hee Y. Kim

The physical composition and intensities of solar particle event exposures of sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissues are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to clarify the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would provide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.


Health Physics | 1995

Issues in Space Radiation Protection: Galactic Cosmic Rays

John W. Wilson; Myung-Hee Y. Kim; W. Schimmerling; F. F. Badavi; Sheila A. Thibeault; Francis A. Cucinotta; Judy L. Shinn; R. Kiefer

When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.


PLOS ONE | 2013

How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars

Francis A. Cucinotta; Myung-Hee Y. Kim; Lori J. Chappell; Janice L. Huff

Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earths magnetosphere and solid body are lost. NASAs radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASAs models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.


Health Physics | 2009

MODELING THE ACUTE HEALTH EFFECTS OF ASTRONAUTS FROM EXPOSURE TO LARGE SOLAR PARTICLE EVENTS

Shaowen Hu; Myung-Hee Y. Kim; Gene E. McClellan; Francis A. Cucinotta

Radiation exposure from Solar Particle Events (SPE) presents a significant health concern for astronauts for exploration missions outside the protection of the Earth’s magnetic field, which could impair their performance and result in the possibility of failure of the mission. Assessing the potential for early radiation effects under such adverse conditions is of prime importance. Here we apply a biologically based mathematical model that describes the dose- and time-dependent early human responses that constitute the prodromal syndromes to consider acute risks from SPEs. We examine the possible early effects on crews from exposure to some historically large solar events on lunar and/or Mars missions. The doses and dose rates of specific organs were calculated using the Baryon radiation transport (BRYNTRN) code and a computerized anatomical man model, while the hazard of the early radiation effects and performance reduction were calculated using the Radiation-Induced Performance Decrement (RIPD) code. Based on model assumptions we show that exposure to these historical events would cause moderate early health effects to crew members inside a typical spacecraft or during extra-vehicular activities, if effective shielding and medical countermeasure tactics were not provided. We also calculate possible even worse cases (double intensity, multiple occurrences in a short period of time, etc.) to estimate the severity, onset and duration of various types of early illness. Uncertainties in the calculation due to limited data on relative biological effectiveness and dose-rate modifying factors for protons and secondary radiation, and the identification of sensitive sites in critical organs are discussed.


Acta Astronautica | 2001

Issues in deep space radiation protection

John W. Wilson; Judy L. Shinn; Ram K. Tripathi; Robert C. Singleterry; Martha S. Clowdsley; Sheila A. Thibeault; F.M. Cheatwood; W. Schimmerling; F. A. Cucinotta; Gautam D. Badhwar; Ahmed K. Noor; Myung-Hee Y. Kim; F. F. Badavi; John H. Heinbockel; J. Miller; C. Zeitlin; L. Heilbronn

The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers.


Health Physics | 2009

PREDICTION OF FREQUENCY AND EXPOSURE LEVEL OF SOLAR PARTICLE EVENTS

Myung-Hee Y. Kim; Matthew J. Hayat; Alan H. Feiveson; Francis A. Cucinotta

For future space missions outside of the Earth’s magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19–23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (&PHgr;30) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total &PHgr;30 fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions.


Radiation and Environmental Biophysics | 1995

Issues in protection from galactic cosmic rays

John Wilson; Sheila A. Thibeault; F. A. Cucinotta; Judy L. Shinn; Myung-Hee Y. Kim; Richard L. Kiefer; F. F. Badavi

Radiation risks to astronauts depend on the microscopic fluctuations of energy absorption events in specific tissues. These fluctuations depend not only on the space environment but also on the modifications of that environment by the shielding provided by structures surrounding the astronauts and the attenuation characteristics of the astronauts body. The effects of attenuation within the shield and body depends on the tissue biological response to these microscopic fluctuations. In the absence of an accepted method for estimating astronaut risk, we examined the attenuation characteristics using conventional linear energy transfer (LET)-dependent quality factors (as one means of representing relative biological effectiveness, RBE) and a track-structure repair model to fit cell transformation (and inactivation) data in the C3H10 T1/2 mouse cell system obtained for various ion beams. Although the usual aluminum spacecraft shield is effective in reducing dose equivalent with increasing shield thickness, cell transformation rates are increased for thin aluminum shields. Clearly, the exact nature of the biological response to LET and track width is critical to evaluation of biological protection factors provided by a shield design. A significant fraction of biological injury results from the LET region above 100 keV/µm. Uncertainty in nuclear cross-sections results in a factor of 2–3 in the transmitted LET spectrum beyond depths of 15 g/cm2, but even greater uncertainty is due to the combined effects of uncertainty in biological response and nuclear parameters. Clearly, these uncertainties must be reduced before the shield design can be finalised.


Journal of Geophysical Research | 2014

Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector

Scot C. Randell Rafkin; C. Zeitlin; Bent Ehresmann; D. M. Hassler; Jingnan Guo; Jan Köhler; Robert F. Wimmer-Schweingruber; Javier Gómez-Elvira; A.-M. Harri; Henrik Kahanpää; David E. Brinza; Gerald Weigle; Stephan Böttcher; Eckart Böhm; Soenke Burmeister; Cesar Martin; Guenther Reitz; Francis A. Cucinotta; Myung-Hee Y. Kim; David Harry Grinspoon; Mark A. Bullock; Arik Posner

The Radiation Assessment Detector onboard the Mars Science Laboratory rover Curiosity is detecting the energetic particle radiation at the surface of Mars. Data collected over the first 350 Martian days of the nominal surface mission show a pronounced diurnal cycle in both the total dose rate and the neutral particle count rate. The diurnal variations detected by the Radiation Assessment Detector were neither anticipated nor previously considered in the literature. These cyclic variations in dose rate and count rate are shown to be the result of changes in atmospheric column mass driven by the atmospheric thermal tide that is characterized through pressure measurements obtained by the Rover Environmental Monitoring Station, also onboard the rover. In addition to bulk changes in the radiation environment, changes in atmospheric shielding forced by the thermal tide are shown to disproportionately affect heavy ions compared to H and He nuclei.

Collaboration


Dive into the Myung-Hee Y. Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wilson

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Artem L. Ponomarev

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaowen Hu

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge