Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. A. Scott is active.

Publication


Featured researches published by N. A. Scott.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1999

The 1997 spectroscopic GEISA databank

Nicole Jacquinet-Husson; Eric Arié; J. Ballard; A. Barbe; Gordon L. Bjoraker; B. Bonnet; Linda R. Brown; C. Camy-Peyret; J.P. Champion; A. Chédin; Alexei A. Chursin; Cathy Clerbaux; Geoffrey Duxbury; J.-M. Flaud; N. Fourrié; André Fayt; G. Graner; Robert R. Gamache; A. Goldman; Vl. Golovko; Guy Guelachvili; J.-M. Hartmann; J.C. Hilico; J. Hillman; G. Lefèvre; E. Lellouch; S.N. Mikhaı̈lenko; Olga V. Naumenko; Vassilii Nemtchinov; D.A. Newnham

The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22,656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described. GEISA-97 and the associated management software are accessible from the ARA/LMD (Laboratoire de Meteorologie Dynamique du CNRS, France) web site: http://ara01.polytechnique.fr/registration.


Journal of Applied Meteorology | 1998

A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget

F. Chevallier; F. Chéruy; N. A. Scott; A. Chédin

Abstract The authors have investigated the possibility of elaborating a new generation of radiative transfer models for climate studies based on the neural network technique. The authors show that their neural network–based model, NeuroFlux, can be used successfully for accurately deriving the longwave radiative budget from the top of the atmosphere to the surface. The reliable sampling of the earth’s atmospheric situations in the new version of the TIGR (Thermodynamic Initial Guess Retrieval) dataset, developed at the Laboratoire de Meteorologie Dynamique, allows for an efficient learning of the neural networks. Two radiative transfer models are applied to the computation of the radiative part of the dataset: a line-by-line model and a band model. These results have been used to infer the parameters of two neural network–based radiative transfer codes. Both of them achieve an accuracy comparable to, if not better than, the current general circulation model radiative transfer codes, and they are much fast...


Journal of Geophysical Research | 2001

Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

Louis Garand; D. S. Turner; M. Larocque; John J. Bates; Sid-Ahmed Boukabara; Pascal Brunel; F. Chevallier; Godelieve Deblonde; Richard J. Engelen; M. Hollingshead; D. Jackson; Gary J. Jedlovec; Joanna Joiner; Thomas J. Kleespies; D. S. McKague; Larry M. McMillin; Jean-Luc Moncet; J. R. Pardo; P. J. Rayer; Eric P. Salathé; R. Saunders; N. A. Scott; P. Van Delst; Harold M. Woolf

The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (advanced microwave sounding unit) channels. Interest in this topic was evident by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However, significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle or more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences.


Journal of Climate | 1999

Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part I: Evaluation of Cloud Parameters

Claudia J. Stubenrauch; William B. Rossow; F. Chéruy; A. Chédin; N. A. Scott

Abstract The improved initialization inversion (3I) algorithms convert TIROS-N Operational Vertical Sounder observations from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting environmental satellites into atmospheric temperature and water vapor profiles, together with cloud and surface properties. Their relatively good spectral resolution and coverage make IR sounders a very useful tool for the determination of cloud properties both day and night. The iterative process of detailed comparisons between cloud parameters obtained from this global dataset, which is available in the framework of the NOAA–National Aeronautics and Space Administration Pathfinder Program, with time–space-collocated observations of clouds from the recently reprocessed International Satellite Cloud Climatology Project (ISCCP) dataset has led to an improved 3I cloud analysis scheme based on a weighted-χ2 method described in the second article of this series. This process also provides a first evaluation of th...


Bulletin of the American Meteorological Society | 1999

Characteristics of the TOVS Pathfinder Path-B Dataset

N. A. Scott; A. Chédin; Raymond Armante; Jennifer A. Francis; Claudia J. Stubenrauch; Jean-Pierre Chaboureau; F. Chevallier; Chantal Claud; Frédérique Cheruy

Abstract From 1979 to present, sensors aboard the NOAA series of polar meteorological satellites have provided continuous measurements of the earths surface and atmosphere. One of these sensors, the TIROS-N Operational Vertical Sounder (TOVS), observes earth-emitted radiation in 27 wavelength bands within the infrared and microwave portions of the spectrum, thereby creating a valuable resource for studying the climate of our planet. The NOAA–NASA Pathfinder program was conceived to make these data more readily accessible to the community in the form of processed geophysical variables. The Atmospheric Radiation Analysis group at the Laboratoire de Meteorologie Dynamique of the Centre National de la Recherche Scientifique of France was selected to process TOVS data into climate products (Path-B). The Improved Initialization Inversion (3I) retrieval algorithm is used to compute these products from the satellite-observed radiances. The processing technique ensures internal coherence and minimizes both observ...


Journal of Climate | 2006

Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B

Claudia J. Stubenrauch; A. Chédin; Gaby Rädel; N. A. Scott

Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1992

Management and study of spectroscopic information: The GEISA program

N. Husson; B. Bonnet; N. A. Scott; A. Chédin

Abstract This paper provides an overview and status of the 1991 GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) data bank, processed at our laboratory. The latest edition of GEISA contains more than 720,000 entries between 0 and 22,656 cm -1 corresponding to 40 molecules and 86 isotopic species. The GEISA program includes the development of software for data base management.


Icarus | 1981

Study of the Ammonia ice cloud layer in the equatorial region of Jupiter from the infrared interferometric experiment on voyager

A. Marten; Daniel Rouan; Jean Paul Baluteau; Daniel Gautier; Barney J. Conrath; R. A. Hanel; Virgil G. Kunde; R. E. Samuelson; A. Chédin; N. A. Scott

Abstract Spectra from the Voyager 1 infrared interferometer spectrometer (IRIS) obtained near the time of closest approach to Jupiter were analyzed for the purpose of inferring ammonia cloud properties associated with the Equatorial Region. Comparisons of observed spectra with synthetic spectra computed from a radiative transfer formulation, that includes multiple scattering, yielded the following conclusions: (1) very few NH 3 ice particles with radii less than 3 μm contribute to the cloud opacity; (2) the major source of cloud opacity arises from particles with radii in excess of 30 μm; (3) column particle densities are between 1 and 2 orders of magnitude smaller than those derived from thermochemical considerations alone, implying the presence of important atmospheric motion; and (4) another cloud system is confirmed to exist deeper in the Jovian troposphere.


Bulletin of the American Meteorological Society | 1988

Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—A Workshop Summary

Frederick M. Luther; Robert G. Ellingson; Yves Fouquart; Stephen B. Fels; N. A. Scott; Warren J. Wiscombe

An international program of intercomparison of radiation models has been initiated because of the central role of radiative processes in many proposed climate change mechanisms. Models ranging from the most detailed (line-by-line) to the most-highly parameterized have been compared with each other and with selected aircraft observations. Although line-by-line-model fluxes tend to agree with each other to within one percent (if the water-vapor–continuum absorption is ignored), the less-detailed models show a spread of 10–20 percent. The spread is even larger (30–40 percent) for the sensitivities of the models to changes in important radiation variables, such as carbon dioxide amounts and water-vapor amounts. These spreads are disturbingly large. Lacking highly accurate flux observations from within the atmosphere, it has been customary to regard line-by-line–model results as “the truth.” However, uncertainties in the physics of line wings and in the proper treatment of the water-vapor continuum make it imp...


Journal of Geophysical Research | 1998

Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations: Method and validation

Jean-Pierre Chaboureau; A. Chédin; N. A. Scott

This paper presents a method to remotely sense the vertical distribution of atmospheric water vapor using spaceborne measurements from the TOVS instrument aboard the NOAA polar satellite series. It describes a new approach to the water vapor retrieval scheme in the improved initialization inversion (3I) method. The technique is based on a neural network scheme, which is analyzed theoretically. Cross-comparisons of its results with a wide variety of independent observations (in situ measurements or other global data sets, e.g., the special sensor microwave/imager (SSM/I) retrievals, analyses) are then carried out to fully evaluate the method. It is shown that the mean of the differences between total water vapor contents obtained from each data set represents less than 20% of the global mean value of the water vapor content. Different behaviors between TOVS and SSM/I in tropical situations are also highlighted. Concerning the vertical profile, the standard deviation between water vapor content retrieved by 3I and measured by radiosondes varies from 20% in the 1000–850 hPa layer to less than 40% in the 500–300 hPa layer. The vertical increase of the error is linked to the difficulty of measuring weak values by radiosonde instruments, radiometers, or analyses.

Collaboration


Dive into the N. A. Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Hollingsworth

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Researchain Logo
Decentralizing Knowledge