Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. F. Oliveira is active.

Publication


Featured researches published by N. F. Oliveira.


Journal of the American Chemical Society | 2008

Correction to “2-(4,5,6,7-Tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, A Hydrogen-Bonded Organic Quasi-1D Ferromagnet”

Hidenori Murata; Yuji Miyazaki; Akira Inaba; A. Paduan-Filho; V. Bindilatti; N. F. Oliveira; Zeynep Delen; Paul M. Lahti

The title radical (F4BImNN) is a stable nitronylnitroxide that forms hydrogen-bonded NH... ON chains in the solid state. The chains assemble the F4BImNN molecules to form stacked contacts between the radical groups, in a geometry that is expected to exhibit ferromagnetic (FM) exchange based on spin polarization (SP) models. The experimental magnetic susceptibility of F4BImNN confirms the expectation, showing 1-D Heisenberg chain FM exchange behavior over 1.8-300 K with an intrachain exchange constant of Jchain/k = +22 K. At lower temperatures, ac magnetic susceptibility and variable field heat capacity measurements show that F4BImNN acts as a quasi-1-D ferromagnet. The dominant ferromagnetic exchange interaction is attributable to overlap between spin orbitals of molecules within the hydrogen-bonded chains, consistent with the SP model expectations. The chains appear to be antiferromagnetically exchange coupled, giving cusps in the ac susceptibility and zero field heat capacity at lower temperatures. The results indicate that the sample orders magnetically at about 0.7 K. The magnetic heat capacity ordering cusp shifts to lower temperatures as external magnetic field increases, consistent with forming a bulk antiferromagnetic phase below a Neel temperature of TN(0) = 0.72 K, with a critical field of Hc approximately 1800 Oe. The interchain exchange is estimated to be zJ/k congruent with (-)0.1 K.


Classical and Quantum Gravity | 2008

The Schenberg spherical gravitational wave detector: the first commissioning runs

O. D. Aguiar; L A Andrade; Joaquim J. Barroso; Pedro J. Castro; C A Costa; S T de Souza; A. de Waard; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; Xavier Gratens; T M A Maffei; N S Magalhaes; R M Marinho; N. F. Oliveira; G L Pimentel; M Remy; Michael E. Tobar; E Abdalla; M. E. S. Alves; Dennis Bessada; Fabio da Silva Bortoli; C. S. S. Brandao; K M F Costa; H A B de Araújo; J C N de Araujo; E. M. de Gouveia Dal Pino; W. de Paula; E C de Rey Neto

Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of Sao Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology.


Nature | 2012

Bose glass and Mott glass of quasiparticles in a doped quantum magnet.

Rong Yu; Liang Yin; N. S. Sullivan; J. S. Xia; Chao Huan; A. Paduan-Filho; N. F. Oliveira; Stephan Haas; Alexander Steppke; C. F. Miclea; Franziska Weickert; R. Movshovich; Eundeok Mun; Brian L. Scott; Vivien Zapf; Tommaso Roscilde

The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose–Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a ‘Bose glass’. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose–Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.


Journal of Physics: Conference Series | 2012

Status Report of the Schenberg Gravitational Wave Antenna

O. D. Aguiar; Joaquim J. Barroso; N C Carvalho; Pedro J. Castro; C.F. Da Silva Costa; J C N de Araujo; Edgard F. D. Evangelista; S R Furtado; Oswaldo D. Miranda; P H R S Moraes; Evangelista Pereira; P R Silveira; C Stellati; N. F. Oliveira; Xavier Gratens; L A N de Paula; S T de Souza; R M Marinho; Felipe Oliveira; Carlos Frajuca; Fabio da Silva Bortoli; Ruthe Rebello Pires; D F A Bessada; N S Magalhaes; M E S Alves; A C Fauth; R P Macedo; Alberto Saa; Denis Borgarelli Tavares; C. S. S. Brandao

Here we present a status report of the Schenberg antenna. In the past three years it has gone to a radical upgrading operation, in which we have been installing a 1K pot dilution refrigerator, cabling and amplifiers for nine transducer circuits, designing a new suspension and vibration isolation system for the microstrip antennas, and developing a full set of new transducers, microstrip antennas, and oscillators. We are also studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector.


Journal of the American Chemical Society | 2012

Magnetic tuning of all-organic binary alloys between two stable radicals

Gonca Seber; R. S. Freitas; Joel T. Mague; A. Paduan-Filho; Xavier Gratens; V. Bindilatti; N. F. Oliveira; Naoki Yoshioka; Paul M. Lahti

Mixtures of 2-(4,5,6,7-tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (F4BImNN) and 2-(benzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (BImNN) crystallize as solid solutions (alloys) across a wide range of binary compositions. (F4BImNN)(x)(BImNN)((1-x)) with x < 0.8 gives orthorhombic unit cells, while x ≥ 0.9 gives monoclinic unit cells. In all crystalline samples, the dominant intermolecular packing is controlled by one-dimensional (1D) hydrogen-bonded chains that lead to quasi-1D ferromagnetic behavior. Magnetic analysis over 0.4-300 K indicates ordering with strong 1D ferromagnetic exchange along the chains (J/k = 12-22 K). Interchain exchange is estimated to be 33- to 150-fold weaker, based on antiferromagnetic ordered phase formation below Néel temperatures in the 0.4-1.2 K range for the various compositions. The ordering temperatures of the orthorhombic samples increase linearly as (1 - x) increases from 0.25 to 1.00. The variation is attributed to increased interchain distance corresponding to decreased interchain exchange, when more F4BImNN is added into the orthorhombic lattice. The monoclinic samples are not part of the same trend, due to the different interchain arrangement associated with the phase change.


Inorganic Chemistry | 2011

Loops, chains, sheets, and networks from variable coordination of Cu(hfac)2 with a flexibly hinged aminoxyl radical ligand.

Martha Baskett; A. Paduan-Filho; N. F. Oliveira; A. Chandrasekaran; Joel T. Mague; Paul M. Lahti

One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(2) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a 1D chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains cross-linked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.


Classical and Quantum Gravity | 2004

The Brazilian spherical detector: progress and plans

O. D. Aguiar; L A Andrade; Joaquim J. Barroso; L. Camargo Filho; L A Carneiro; Carlos Castro; Pedro J. Castro; C A Costa; K M F Costa; J C N de Araujo; A U de Lucena; W. de Paula; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; Lucrécia Camilo de Lima; N S Magalhães; R M Marinho; E S Matos; J L Melo; O D Miranda; N. F. Oliveira; B W Paleo; M Remy; Kilder L. Ribeiro; C Stellati; Walter F. Velloso

We are building the Schenberg gravitational wave detector at the Physics Institute of the University of Sao Paulo as programmed by the Brazilian Graviton Project. The antenna and its vibration isolation system are already built, and we have made a first cryogenic run for an overall test, in which we measured the antenna mechanical Q (figure of merit). We also have built a 10.21 GHz oscillator with phase noise performance better than -120 dBc at 3.2 kHz to pump an initial CuA16% two-mode transducer. We plan to prepare this spherical antenna for a first operational run at 4.2 K with a single transducer and an initial target sensitivity of h ∼ 2 x 10 -21 Hz -1/2 in a 50 Hz bandwidth around 3.2 kHz soon. Here we present details of this plan and some recent results of the development of this project.


Brazilian Journal of Physics | 2004

MBE Growth and Characterization of Sn1-xEuxTe

A. Y. Ueta; P. H. O. Rappl; H. Closs; P. Motisuke; E. Abramof; V. R. dos Anjos; V. A. Chitta; J. A. Coaquira; N. F. Oliveira; G. Bauer

Epilayers of Sn1-xEuxTe (0 < x < 0:03) were grown by molecular beam epitaxy on freshly cleaved BaF2(111) substrates and their structural, electrical and optical properties were investigated. The thicknesses of epilayers were about 1.5 mm and deposition was carried out at growth temperatures of 300 oC. The structural properties were investigated by high resolution X-ray diffraction and a sharp film degradation could be observed with increasing europium content. Electrical measurements with temperature varying from 300 to 10K indicated that the epilayers present carrier concentration ranging between 3 x 1020 and 6 x 1020cm-3 and a low resistivity from 6.3 x 10-5 to 1.2 x 10-4 W.cm. From optical measurements it could be seen that spectra present a low energy edge corresponding to the beginning of intra band excitations and the high energy edge due to inter band excitations.


Classical and Quantum Gravity | 2006

The Brazilian gravitational wave detector Mario Schenberg : status report

O. D. Aguiar; L A Andrade; Joaquim J. Barroso; Fabio da Silva Bortoli; L A Carneiro; Pedro J. Castro; C A Costa; K M F Costa; J C N de Araujo; A U de Lucena; W. de Paula; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; N S Magalhaes; R M Marinho; J L Melo; O D Miranda; N. F. Oliveira; Kilder L. Ribeiro; C Stellati; Walter F. Velloso; J. Weber

The Mario Schenberg gravitational wave detector has been constructed at its site in the Physics Institute of the University of Sao Paulo as programmed by the Brazilian Graviton Project, under the full support of FAPESP (the Sao Paulo State Foundation for Research Support). We are preparing it for a first commissioning run of the spherical antenna at 4.2 K with three parametric transducers and an initial target sensitivity of h ~ 2 × 10−21 Hz−1/2 in a 60 Hz bandwidth around 3.2 kHz. Here we present the status of this project.


Journal of Physics: Condensed Matter | 2004

Sharp lines in the absorption edge of EuTe and Pb0.1Eu0.9Te in high magnetic fields

L K Hanamoto; A. B. Henriques; N. F. Oliveira; P Rappl; E Abramof; Y Ueta

The optical absorption spectra in the region of the transition energies of epitaxial layers of EuTe and Pb0.1Eu0.9Te, grown by molecular beam epitaxy, were studied using circularly polarized light, in the Faraday configuration. Under ?+ polarization a sharp symmetric absorption line (full width at half-maximum 0.041?eV) emerges on the low energy side of the band-edge absorption, for magnetic field intensities greater than 6?T. The absorption line shows a huge red shift (35?meV?T?1) with increasing magnetic field. The peak position of the absorption line as a function of magnetic field is dominated by the d?f exchange interaction of the excited electron and the Eu2+ spins in the lattice. The d?f exchange interaction energy was estimated to be JdfS = 0.15 ? 0.01?eV. In Pb0.1Eu0.9Te the same absorption line is detected, but it is broader, due to alloy disorder, indicating that the excitation is localized within a finite radius. From a comparison of the absorption spectra in EuTe and Pb0.1Eu0.9Te the characteristic radius of the excitation is estimated to be ??.

Collaboration


Dive into the N. F. Oliveira's collaboration.

Top Co-Authors

Avatar

Y. Shapira

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

V. Bindilatti

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Gratens

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Z. Golacki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

O. D. Aguiar

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

S R Furtado

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

C. C. Becerra

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

R M Marinho

Instituto Tecnológico de Aeronáutica

View shared research outputs
Top Co-Authors

Avatar

Carlos Frajuca

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge