Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Neumann is active.

Publication


Featured researches published by N. Neumann.


Nature | 2014

Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers

F. Trinter; M. Schöffler; H.-K. Kim; F. Sturm; K. Cole; N. Neumann; A. Vredenborg; Joshua Williams; I. Bocharova; Renaud Guillemin; Marc Simon; A. Belkacem; Allen Lee Landers; Th. Weber; H. Schmidt-Böcking; R. Dörner; T. Jahnke

In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20 femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.


Physical Review Letters | 2010

Fragmentation dynamics of CO(2)(3+) investigated by multiple electron capture in collisions with slow highly charged ions.

N. Neumann; D. Hant; L. Ph. H. Schmidt; J. Titze; T. Jahnke; A. Czasch; M. Schöffler; K. Kreidi; O. Jagutzki; H. Schmidt-Böcking; R. Dörner

Fragmentation of highly charged molecular ions or clusters consisting of more than two atoms can proceed in a one step synchronous manner where all bonds break simultaneously or sequentially by emitting one ion after the other. We separated these decay channels for the fragmentation of CO(2)(3+) ions by measuring the momenta of the ionic fragments. We show that the total energy deposited in the molecular ion is a control parameter which switches between three distinct fragmentation pathways: the sequential fragmentation in which the emission of an O(+) ion leaves a rotating CO(2+) ion behind that fragments after a time delay, the Coulomb explosion and an in-between fragmentation--the asynchronous dissociation. These mechanisms are directly distinguishable in Dalitz plots and Newton diagrams of the fragment momenta. The CO(2)(3+) ions are produced by multiple electron capture in collisions with 3.2 keV/u Ar(8+) ions.


Physical Review Letters | 2010

Interatomic Coulombic Decay following Photoionization of the Helium Dimer: Observation of Vibrational Structure

T. Havermeier; T. Jahnke; K. Kreidi; R. Wallauer; S. Voss; M. Schöffler; S. Schössler; L. Foucar; N. Neumann; J. Titze; H. Sann; Matthias Kühnel; J. Voigtsberger; J. H. Morilla; Wieland Schöllkopf; H. Schmidt-Böcking; R. E. Grisenti; R. Dörner

Using synchrotron radiation we simultaneously ionize and excite one helium atom of a helium dimer (He2) in a shakeup process. The populated states of the dimer ion [i.e., He(*+)(n = 2, 3) - He] are found to deexcite via interatomic Coulombic decay. This leads to the emission of a second electron from the neutral site and a subsequent Coulomb explosion. In this Letter we present a measurement of the momenta of fragments that are created during this reaction. The electron energy distribution and the kinetic energy release of the two He+ ions show pronounced oscillations which we attribute to the structure of the vibrational wave function of the dimer ion.


Journal of Physics B | 2008

Localization of inner-shell photoelectron emission and interatomic Coulombic decay in Ne2

K. Kreidi; T. Jahnke; Th. Weber; T. Havermeier; R. E. Grisenti; Y. Morisita; S. Schössler; L. Ph. H. Schmidt; M. Schöffler; M. Odenweller; N. Neumann; L. Foucar; J. Titze; B. Ulrich; F. Sturm; C. Stuck; R. Wallauer; S. Voss; I. Lauter; H.-K. Kim; M. Rudloff; H. Fukuzawa; G. Prümper; Norio Saito; K. Ueda; A. Czasch; O. Jagutzki; H. Schmidt-Böcking; S. K. Semenov; N. A. Cherepkov

We used cold target recoil ion momentum spectroscopy (COLTRIMS) to investigate the decay of Ne2 after K-shell photoionization. The breakup into Ne1+/Ne2+ shows interatomic Coulombic decay (ICD) occurring after a preceding atomic Auger decay. The molecular frame angular distributions of the photoelectron and the ICD electron show distinct, asymmetric features, which imply localization of the K-vacancy created at one of the two atomic sites of the Ne2 and an emission of the ICD electron from a localized site. The experimental results are supported by calculations in the frozen core Hartree–Fock approach.


Nature Communications | 2014

Imaging the structure of the trimer systems 4He3 and 3He4He2

J. Voigtsberger; S. Zeller; Jasper Becht; N. Neumann; F. Sturm; H.-K. Kim; M. Waitz; F. Trinter; Maksim Kunitski; Anton Kalinin; Jian Wu; Wieland Schöllkopf; Dario Bressanini; A. Czasch; Joshua Williams; L. Schmidt; M. Schöffler; R. E. Grisenti; T. Jahnke; R. Dörner

Helium shows fascinating quantum phenomena unseen in any other element. In its liquid phase, it is the only known superfluid. The smallest aggregates of helium, the dimer (He2) and the trimer (He3) are, in their predicted structure, unique natural quantum objects. While one might intuitively expect the structure of (4)He3 to be an equilateral triangle, a manifold of predictions on its shape have yielded an ongoing dispute for more than 20 years. These predictions range from (4)He3 being mainly linear to being mainly an equilateral triangle. Here we show experimental images of the wave functions of (4)He3 and (3)He(4)He2 obtained by Coulomb explosion imaging of mass-selected clusters. We propose that (4)He3 is a structureless random cloud and that (3)He(4)He2 exists as a quantum halo state.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Enhanced production of low energy electrons by alpha particle impact

H.-K. Kim; J. Titze; M. Schöffler; F. Trinter; M. Waitz; J. Voigtsberger; H. Sann; M. Meckel; Christian Stuck; Ute Lenz; Matthias Odenweller; N. Neumann; S. Schössler; B. Ulrich; Rui Costa Fraga; Nikos Petridis; D. Metz; Annika Jung; R. E. Grisenti; A. Czasch; O. Jagutzki; L. Schmidt; T. Jahnke; H. Schmidt-Böcking; R. Dörner

Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.


Physical Review Letters | 2010

Single Photon Double Ionization of the Helium Dimer

T. Havermeier; T. Jahnke; K. Kreidi; R. Wallauer; S. Voss; M. Schöffler; S. Schössler; L. Foucar; N. Neumann; J. Titze; H. Sann; Matthias Kühnel; J. Voigtsberger; A. Malakzadeh; Nicolas Sisourat; Wieland Schöllkopf; H. Schmidt-Böcking; R. E. Grisenti; R. Dörner

We show that a single photon can ionize the two helium atoms of the helium dimer in a distance up to 10 A. The energy sharing among the electrons, the angular distributions of the ions and electrons, as well as comparison with electron impact data for helium atoms suggest a knockoff type double ionization process. The Coulomb explosion imaging of He2 provides a direct view of the nuclear wave function of this by far most extended and most diffuse of all naturally existing molecules.


Physical Review A | 2013

Ion-impact-induced interatomic Coulombic decay in neon and argon dimers

H.-K. Kim; H. Gassert; M. Schöffler; J. Titze; M. Waitz; J. Voigtsberger; F. Trinter; Jasper Becht; Anton Kalinin; N. Neumann; C. Zhou; L. Ph. H. Schmidt; O. Jagutzki; A. Czasch; H. Merabet; H. Schmidt-Böcking; T. Jahnke; A. Cassimi; R. Dörner

We investigate the contribution of Interatomic Coulombic Decay induced by ion impact in neon and argon dimers (Ne


Review of Scientific Instruments | 2012

Momentum spectrometer for electron-electron coincidence studies on superconductors

R. Wallauer; Stefan Voss; Lutz Foucar; Tobias Bauer; Deborah Schneider; J. Titze; B. Ulrich; Katharina Kreidi; N. Neumann; T. Havermeier; M. Schöffler; T. Jahnke; A. Czasch; L. Schmidt; Amit Kanigel; J. C. Campuzano; Harald O. Jeschke; Roser Valenti; Andreas Müller; G. Berner; M. Sing; R. Claessen; H. Schmidt-Böcking; R. Dörner

_2


Physical Review A | 2014

Electron emission from H 2 + in strong laser fields

M. Odenweller; J. Lower; K. Pahl; M. Schütt; Jian Wu; K. Cole; A. Vredenborg; L. Ph. H. Schmidt; N. Neumann; J. Titze; T. Jahnke; M. Meckel; Maksim Kunitski; T. Havermeier; S. Voss; M. Schöffler; H. Sann; J. Voigtsberger; H. Schmidt-Böcking; R. Dörner

and Ar

Collaboration


Dive into the N. Neumann's collaboration.

Top Co-Authors

Avatar

M. Schöffler

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

T. Jahnke

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

R. Dörner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

A. Czasch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

J. Titze

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

O. Jagutzki

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

K. Kreidi

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

H.-K. Kim

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

L. Ph. H. Schmidt

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

R. E. Grisenti

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge