Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Czasch is active.

Publication


Featured researches published by A. Czasch.


Nature Communications | 2013

Understanding the role of phase in chemical bond breaking with coincidence angular streaking

Jian Wu; Maia Magrakvelidze; L. Schmidt; Maksim Kunitski; Thomas Pfeifer; M. Schöffler; M. Pitzer; Martin Richter; S. Voss; H. Sann; H.-K. Kim; J. Lower; T. Jahnke; A. Czasch; Uwe Thumm; R. Dörner

Electron motion in chemical bonds occurs on an attosecond timescale. This ultrafast motion can be driven by strong laser fields. Ultrashort asymmetric laser pulses are known to direct electrons to a certain direction. But do symmetric laser pulses destroy symmetry in breaking chemical bonds? Here we answer this question in the affirmative by employing a two-particle coincidence technique to investigate the ionization and fragmentation of H₂ by a long circularly polarized multicycle femtosecond laser pulse. Angular streaking and the coincidence detection of electrons and ions are employed to recover the phase of the electric field, at the instant of ionization and in the molecular frame, revealing a phase-dependent anisotropy in the angular distribution of H⁺ fragments. Our results show that electron localization and asymmetrical breaking of molecular bonds are ubiquitous, even in symmetric laser pulses. The technique we describe is robust and provides a powerful tool for ultrafast science.


Science | 2008

Ultrafast Probing of Core Hole Localization in N2

M. Schöffler; J. Titze; N. Petridis; T. Jahnke; K. Cole; L. Ph. H. Schmidt; A. Czasch; D. Akoury; O. Jagutzki; Joshua Williams; N. A. Cherepkov; S. K. Semenov; C W McCurdy; Thomas N. Rescigno; C. L. Cocke; T. Osipov; Seok-Yong Lee; M. H. Prior; A. Belkacem; Allen Lee Landers; H. Schmidt-Böcking; Th. Weber; R. Dörner

Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.


Physical Review Letters | 2010

Fragmentation dynamics of CO(2)(3+) investigated by multiple electron capture in collisions with slow highly charged ions.

N. Neumann; D. Hant; L. Ph. H. Schmidt; J. Titze; T. Jahnke; A. Czasch; M. Schöffler; K. Kreidi; O. Jagutzki; H. Schmidt-Böcking; R. Dörner

Fragmentation of highly charged molecular ions or clusters consisting of more than two atoms can proceed in a one step synchronous manner where all bonds break simultaneously or sequentially by emitting one ion after the other. We separated these decay channels for the fragmentation of CO(2)(3+) ions by measuring the momenta of the ionic fragments. We show that the total energy deposited in the molecular ion is a control parameter which switches between three distinct fragmentation pathways: the sequential fragmentation in which the emission of an O(+) ion leaves a rotating CO(2+) ion behind that fragments after a time delay, the Coulomb explosion and an in-between fragmentation--the asynchronous dissociation. These mechanisms are directly distinguishable in Dalitz plots and Newton diagrams of the fragment momenta. The CO(2)(3+) ions are produced by multiple electron capture in collisions with 3.2 keV/u Ar(8+) ions.


Nature | 2004

Complete photo-fragmentation of the deuterium molecule

T. Weber; A. Czasch; O. Jagutzki; A. K. Müller; V. Mergel; Anatoli Kheifets; Eli Rotenberg; G. Meigs; M. H. Prior; Sebastian Daveau; Allen Lee Landers; C. L. Cocke; T. Osipov; R. Díez Muiño; H. Schmidt-Böcking; R. Dörner

All properties of molecules—from binding and excitation energies to their geometry—are determined by the highly correlated initial-state wavefunction of the electrons and nuclei. Details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon, by collision with a charged particle or by exposure to a strong laser pulse: if the interaction causing the excitation is sufficiently understood, the fragmentation process can then be used as a tool to investigate the bound initial state. The interaction and resulting fragment motions therefore pose formidable challenges to quantum theory. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single-photon-induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.


Physical Review Letters | 2012

Multiorbital Tunneling Ionization of the CO Molecule

Jian Wu; L. Schmidt; Maksim Kunitski; M. Meckel; S. Voss; H. Sann; H.-K. Kim; T. Jahnke; A. Czasch; R. Dörner

We coincidently measure the molecular-frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.


Review of Scientific Instruments | 2008

Time-resolved momentum imaging system for molecular dynamics studies using a tabletop ultrafast extreme-ultraviolet light source

Etienne Gagnon; Arvinder Sandhu; Ariel Paul; Kim Hagen; A. Czasch; T. Jahnke; Predrag Ranitovic; C. Lewis Cocke; Barry C. Walker; Margaret M. Murnane; Henry C. Kapteyn

We describe a momentum imaging setup for direct time-resolved studies of ionization-induced molecular dynamics. This system uses a tabletop ultrafast extreme-ultraviolet (EUV) light source based on high harmonic upconversion of a femtosecond laser. The high photon energy (around 42 eV) allows access to inner-valence states of a variety of small molecules via single photon excitation, while the sub--10-fs pulse duration makes it possible to follow the resulting dynamics in real time. To obtain a complete picture of molecular dynamics following EUV induced photofragmentation, we apply the versatile cold target recoil ion momentum spectroscopy reaction microscope technique, which makes use of coincident three-dimensional momentum imaging of fragments resulting from photoexcitation. This system is capable of pump-probe spectroscopy by using a combination of EUV and IR laser pulses with either beam as a pump or probe pulse. We report several experiments performed using this system.


Nature Communications | 2012

Probing the tunnelling site of electrons in strong field enhanced ionization of molecules

Jian Wu; M. Meckel; L. Ph. H. Schmidt; Maksim Kunitski; S. Voss; H. Sann; H.-K. Kim; T. Jahnke; A. Czasch; R. Dörner

Molecules show a much increased multiple ionization rate in a strong laser field as compared with atoms of similar ionization energy. A widely accepted model attributes this to the action of the joint fields of the adjacent ionic core and the laser on its neighbour inside the same molecule. The underlying physical picture for the enhanced ionization is that it is the up-field atom that gets ionized. However, this is still debated and remains unproven. Here we report an experimental verification of this long-standing prediction. This is accomplished by probing the two-site double ionization of ArXe, where the instantaneous field direction at the moment of electron release and the emission direction of the correlated ionizing centre are measured by detecting the recoil sum- and relative-momenta of the fragment ions. Our results unambiguously prove the intuitive picture of the enhanced multielectron dissociative ionization of molecules and clarify a long-standing controversy.


Journal of Physics B | 2008

Localization of inner-shell photoelectron emission and interatomic Coulombic decay in Ne2

K. Kreidi; T. Jahnke; Th. Weber; T. Havermeier; R. E. Grisenti; Y. Morisita; S. Schössler; L. Ph. H. Schmidt; M. Schöffler; M. Odenweller; N. Neumann; L. Foucar; J. Titze; B. Ulrich; F. Sturm; C. Stuck; R. Wallauer; S. Voss; I. Lauter; H.-K. Kim; M. Rudloff; H. Fukuzawa; G. Prümper; Norio Saito; K. Ueda; A. Czasch; O. Jagutzki; H. Schmidt-Böcking; S. K. Semenov; N. A. Cherepkov

We used cold target recoil ion momentum spectroscopy (COLTRIMS) to investigate the decay of Ne2 after K-shell photoionization. The breakup into Ne1+/Ne2+ shows interatomic Coulombic decay (ICD) occurring after a preceding atomic Auger decay. The molecular frame angular distributions of the photoelectron and the ICD electron show distinct, asymmetric features, which imply localization of the K-vacancy created at one of the two atomic sites of the Ne2 and an emission of the ICD electron from a localized site. The experimental results are supported by calculations in the frozen core Hartree–Fock approach.


Physical Review Letters | 2012

Spatial imaging of the H2(+) vibrational wave function at the quantum limit.

L. Schmidt; T. Jahnke; A. Czasch; M. Schöffler; H. Schmidt-Böcking; R. Dörner

We experimentally obtained a direct image of the nuclear wave functions of H(2)(+) by dissociating the molecule via electron attachment and determining the vibrational state using the cold target recoil ion momentum spectroscopy technique. Our experiment visualizes the nodal structure of different vibrational states. We compare our results to the widely used reflection approximation and to quantum simulations and discuss the limits of position measurements in molecules imposed by the uncertainty principle.


Nature Communications | 2014

Imaging the structure of the trimer systems 4He3 and 3He4He2

J. Voigtsberger; S. Zeller; Jasper Becht; N. Neumann; F. Sturm; H.-K. Kim; M. Waitz; F. Trinter; Maksim Kunitski; Anton Kalinin; Jian Wu; Wieland Schöllkopf; Dario Bressanini; A. Czasch; Joshua Williams; L. Schmidt; M. Schöffler; R. E. Grisenti; T. Jahnke; R. Dörner

Helium shows fascinating quantum phenomena unseen in any other element. In its liquid phase, it is the only known superfluid. The smallest aggregates of helium, the dimer (He2) and the trimer (He3) are, in their predicted structure, unique natural quantum objects. While one might intuitively expect the structure of (4)He3 to be an equilateral triangle, a manifold of predictions on its shape have yielded an ongoing dispute for more than 20 years. These predictions range from (4)He3 being mainly linear to being mainly an equilateral triangle. Here we show experimental images of the wave functions of (4)He3 and (3)He(4)He2 obtained by Coulomb explosion imaging of mass-selected clusters. We propose that (4)He3 is a structureless random cloud and that (3)He(4)He2 exists as a quantum halo state.

Collaboration


Dive into the A. Czasch's collaboration.

Top Co-Authors

Avatar

R. Dörner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

T. Jahnke

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

O. Jagutzki

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

M. Schöffler

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

L. Ph. H. Schmidt

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

J. Titze

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Th. Weber

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Schmidt

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

N. Neumann

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge