Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nacer Bellaloui is active.

Publication


Featured researches published by Nacer Bellaloui.


Toxins | 2012

Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

Hirut Kebede; Hamed K. Abbas; Daniel K. Fisher; Nacer Bellaloui

Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.


Journal of Agricultural and Food Chemistry | 2010

Glyphosate Affects Seed Composition in Glyphosate-Resistant Soybean

Luiz Henrique Saes Zobiole; Rubem S. Oliveira; Jesuí Vergílio Visentainer; Robert J. Kremer; Nacer Bellaloui; Tsuioshi Yamada

The cultivation of glyphosate-resistant (GR) soybeans has continuously increased worldwide in recent years mainly due to the importance of glyphosate in current weed management systems. However, not much has been done to understand eventual effects of glyphosate application on GR soybean physiology, especially those related to seed composition with potential effects on human health. Two experiments were conducted to evaluate the effects of glyphosate application on GR soybeans compared with its near-isogenic non-GR parental lines. Results of the first experiment showed that glyphosate application resulted in significant decreases in shoot nutrient concentrations, photosynthetic parameters, and biomass production. Similar trends were observed for the second experiment, although glyphosate application significantly altered seed nutrient concentrations and polyunsaturated fatty acid percentages. Glyphosate resulted in significant decreases in polyunsaturated linoleic acid (18:2n-6) (2.3% decrease) and linolenic acid (18:3n-3) (9.6% decrease) and a significant increase in monounsaturated fatty acids 17:1n-7 (30.3% increase) and 18:1n-7 (25% increase). The combined observations of decreased photosynthetic parameters and low nutrient availability in glyphosate-treated plants may explain potential adverse effects of glyphosate in GR soybeans.


Irrigation Science | 2008

Seed composition is influenced by irrigation regimes and cultivar differences in soybean

Nacer Bellaloui; Alemu Mengistu

In the midsouth USA, soybean is produced either under irrigated or non-irrigated conditions. The objective of this experiment was to show the utility of supplemental irrigation as an alternative to full-season and non-irrigation to achieve high yield and high seed composition. The effects of irrigation and cultivar differences on soybean yield and seed composition were conducted. Two cultivars (Dwight and Freedom) and three irrigation regimes (full-season irrigation, FS; reproductive stage/supplemental irrigation, RI; and non-irrigation, NI) were used. Protein percentage was higher in Dwight under FS and RI than NI. In Freedom, protein percentage was higher under NI than under FS and RI. Under NI, Freedom had higher protein percentage than Dwight, especially in 2004, but lower oil in 2003 and 2004. Cultivars showed significant differences in fatty acids. Yield in Freedom under FS and RI was not significantly different. Nitrogen fixation was substantially higher under NI conditions. The results indicate that irrigation management and cultivar selection significantly affect seed composition and yield. Protein increase in Freedom under non-irrigated conditions may benefit producers for high protein seed under dry-land conditions. Supplemental irrigation at the reproductive stage may be a possible alternative for full season irrigation for the cultivar Freedom.


Journal of Agricultural and Food Chemistry | 2008

Nitrogen Metabolism and Seed Composition As Influenced by Glyphosate Application in Glyphosate-Resistant Soybean

Nacer Bellaloui; Robert M. Zablotowicz; Krishna N. Reddy; Craig A. Abel

Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism.


Journal of Agricultural and Food Chemistry | 2009

Effects of Glyphosate Application on Seed Iron and Root Ferric (III) Reductase in Soybean Cultivars

Nacer Bellaloui; Krishna N. Reddy; Robert M. Zablotowicz; Hamed K. Abbas; Craig A. Abel

Previous research demonstrated that plant nutrient assimilation was reduced by glyphosate (Gly). A 2 year field experiment investigated the effects of Gly at drift rate (12.5% of commercial use rate) on Fe concentrations in leaves and seeds of Gly-sensitive (GS) soybean, and a greenhouse experiment evaluated Gly effects on Fe assimilation using root in vivo ferric reductase activity (FRA) in two GS and one Gly-resistant (GR) soybean cultivars. Field studies showed that Gly drift rates resulted in a significant decrease in the Fe concentration in seeds and leaves compared to the nontreated plants. In greenhouse studies, leaf Fe and FRA were inhibited in GS cultivars Hutcheson and DP 5110 and the GR cultivar AG 4604RR and leaf Fe was positively correlated with root FRA (p < 0.0001). These results indicate that Gly can interfere with Fe assimilation in both GS and GR soybean. Understanding the implication of Gly on Fe nutrition in soybean seed would help soybean agronomists and breeders seeking to improve seed mineral nutrition qualities.


Plant and Soil | 2010

Nitrogen metabolism and seed composition as influenced by foliar boron application in soybean.

Nacer Bellaloui; Krishna N. Reddy; Anne M. Gillen; Craig A. Abel

The physiological effects of foliar boron application (FB) on nitrogen metabolism and seed composition have not been well established in soybean [(Glycine max(L.)Merr.)]. Therefore, the effect of FB on nitrogen metabolism and seed composition was investigated. Nitrate assimilation was evaluated by measuring nitrate reductase activity (NRA) and nitrogen fixation was evaluated by measuring nitrogenase activity and natural abundance of 15N/14N. NRA were significantly (P ≤ 0.05) higher in plants that received FB than the control plants. Higher rate of FB (One application of four times of commercial rate) inhibited nitrogen fixation as measured by natural abundance of 15N/14N ratio, but increased NRA. The higher activities of NR and nitrogenase by FB were accompanied with a higher B concentration in leaves. The significant (P < 0.0001) enrichment of 15N/14N, accompanied with a higher rate of FB, suggested a possible mechanism where nitrate assimilation may compensate for the decrease in nitrogen fixation. FB increased seed protein by 13.7% and oleic acid by 30.9% compared to the control plants. This alteration was accompanied by a higher B concentration in leaves and seed. The results suggest that FB affects nitrogen metabolism and alters seed compositions, especially protein and unsaturated fatty acids.


Journal of Agricultural and Food Chemistry | 2010

Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

Krishna N. Reddy; Nacer Bellaloui; Robert M. Zablotowicz

When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift.


Plant Disease | 2011

Seasonal Progress of Charcoal Rot and Its Impact on Soybean Productivity

Alemu Mengistu; James R. Smith; Jeffrey D. Ray; Nacer Bellaloui

The seasonal progress of charcoal rot (caused by Macrophomina phaseolina) was measured over two growing seasons in four separate experiments: irrigated infested, irrigated non-infested, non-irrigated infested, and non-irrigated noninfested. Disease was assessed at V5, R1, R3, R5, R6, and R7 growth stages based on colony forming units (CFU) of M. phaseolina recovered from the lower stem and root tissues and the area under the disease progress curve (AUDPC). The population density of M. phaseolina increased slowly from the V5 to R6 growth stages and then rapidly from the R6 to R7 growth stages for all genotypes in all four experiments. Yield loss due to charcoal rot ranged from 6 to 33% in irrigated environments. The extent of yield loss was affected by severity of charcoal rot, which in turn was affected by year. Yield loss due to charcoal rot was consistently measured in all paired comparisons in irrigated environments, suggesting that charcoal rot can be an important disease in irrigated environments. Disease severity based on CFU accounted for more yield loss variation (42%) than did the AUDPC (36%) when used to assess disease. Growth stage R7 was found to be the optimum stage for assessing disease using CFU. In addition, screening soybean genotypes under irrigation environment may have utility in breeding programs where there is a need for evaluating soybean genotypes for both disease resistance and yield.


Frontiers in Plant Science | 2015

Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA

Nacer Bellaloui; H. Arnold Bruns; Hamed K. Abbas; Alemu Mengistu; Daniel K. Fisher; Krishna N. Reddy

Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m-2. The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m-2), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.


Plant Disease | 2009

Seasonal Progress of Phomopsis longicolla Infection on Soybean Plant Parts and Its Relationship to Seed Quality

Alemu Mengistu; Lisa A. Castlebury; Rusty Smith; Jeff Ray; Nacer Bellaloui

Phomopsis longicolla is a major seed pathogen of soybean (Glycine max) in hot, humid environments. The objective of this study was to monitor the infection and development of P. longicolla on vegetative and reproductive tissues of six cultivars and to determine the relationship between this infection and subsequent seed infection and seed germination. Cultivars were grown for 3 years (2002 to 2004) without irrigation or with irrigation applied at pre- plus postflowering or at postflowering growth stages. P. longicolla was isolated most frequently from leaf, stem, pod, root, and seed. Diaporthe phaseolorum and three unidentified Phomopsis sp. were also isolated. Diaporthe aspalathi, which previously has not been reported on soybean, was also recovered from leaf samples. These isolates, however, were recovered very infrequently. Recovery of P. longicolla from roots was much lower than from leaves, stems, and pods in all years and irrigation environments. The recovery of P. longicolla from seed was affected by irrigation environments. Seed from irrigated plots had more P. longicolla than that from nonirrigated plots. Isolation of P. longicolla from seed was negatively correlated with percentage of seed germination in irrigated environments but not in the nonirrigated environment. Pod infection was correlated with seed infection in all three irrigation environments. Even though infection of leaves and stems increased with increasing moisture availability, such infection did not consistently correlate with seed infection. Seed germination and seed infection were negatively correlated with percent hard seed. This study provided the first demonstration of the seasonal progression of P. longicolla on soybean cultivars grown under three irrigation environments.

Collaboration


Dive into the Nacer Bellaloui's collaboration.

Top Co-Authors

Avatar

Alemu Mengistu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Krishna N. Reddy

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Hamed K. Abbas

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Anne M. Gillen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

James R. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

My Abdelmajid Kassem

American University of Ras Al Khaimah

View shared research outputs
Top Co-Authors

Avatar

Robert M. Zablotowicz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Daniel K. Fisher

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Craig A. Abel

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

David A. Lightfoot

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge