Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadezhda A. Galeva is active.

Publication


Featured researches published by Nadezhda A. Galeva.


Biochemical Journal | 2006

Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: selective protein oxidation during biological aging.

Victor S. Sharov; Elena S. Dremina; Nadezhda A. Galeva; Todd D. Williams; Christian Schöneich

The selective reversible S-glutathiolation of specific SERCA (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase) cysteine residues represents a novel physiologic pathway of NO (nitric oxide)-dependent arterial smooth muscle relaxation [Adachi, Weisbrod, Pimentel, Ying, Sharov, Schöneich and Cohen (2004) Nat. Med. 10, 1200-1207]. This mechanism may be impaired through the irreversible oxidation of functionally important cysteine residues as a consequence of oxidative stress and aging. To establish whether in vivo aging and in vitro oxidation by peroxynitrite result in the loss of such functionally important cysteine residues of SERCA, we have developed and optimized a quantitative method to monitor the oxidation state of the individual SERCA cysteine residues using a maleimide-based fluorescence dye, TG1 (ThioGlo 1), as a label for cysteine residues that have not been altered by oxidation and are not involved in disulphide bridges. A high efficiency for TG1 labelling of such residues and the chemical structure of cysteine-TG1 adducts were validated by MS analysis of model peptides, model proteins and rat skeletal muscle SERCA1. Tryptic peptides containing 18 out of a total of 24 cysteine residues were identified by HPLC-ESI (electrospray ionization)-MS/MS (tandem MS). Two cysteine residues, at positions 344 and 349, were detected in the form of an internal disulphide bridge, and another 16 were found to be labelled with TG1. Using HPLC-ESI-MS, we quantitatively mapped peroxynitrite oxidation of eight cysteine residues (positions 364, 417, 420, 498, 525, 674, 675 and 938), some of which are involved in the control of SERCA activity. Biological aging resulted in the partial modification of cysteine residues 377, 498, 525, 561, 614, 636, 674, 675, 774 and 938. Neither peroxynitrite exposure nor biological aging affected the apparent SERCA1 ATP affinity. Our data show an age-dependent loss of cysteine residues (approx. 2.8 mol of cysteine/mol of SERCA1), which may be partially responsible for the age-dependent decrease in the specific Ca2+-ATPase activity (by 40%).


Proteomics | 2002

Comparison of one‐dimensional and two‐dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: Cytochromes P450 and other membrane proteins

Nadezhda A. Galeva; Michail Altermann

Gel electrophoresis in combination with peptide mass fingerprinting is the method of choice for proteomic profiling of various in vitro and in vivo biological systems. In the investigation reported here we analyzed the protein composition of hepatic microsomes from untreated and phenobarbital treated rats, using one‐dimensional (1‐DE) and two‐dimensional (2‐DE) gel electrophoresis, followed by tryptic peptide mapping. To better characterize capabilities of 2‐DE 1‐DE with regard to microsomal membrane proteins, “ghosts” of microsomal vesicles enriched in membrane proteins were obtained and analyzed. Both 1‐DE and 2‐DE showed that phenobarbital induces not only cytochromes P450 2B1and 2B2 but such stress related endoplasmic reticulum proteins as protein disulfide isomerase A3 and A6 and 78 kDa glucose regulated protein. The analytical performance of 1‐DE with regard to endoplasmic reticulum membrane proteins is incomparably greater than that of 2‐DE. Twenty‐two out of a total of thirty‐four known to date microsomal rat membrane proteins were identified by 1‐DE in combination with matrix‐assisted laser desorption/ionization‐mass spectrometry of in‐gel digests. At the same time using various types of 2‐DE, we were able to identify only three rat microsomal membrane proteins. The data presented in this manuscript clearly demonstrate that 1‐DE in combination with peptide mass fingerprinting can be successfully used for cataloging proteins of the endoplasmic reticulum, and that the proteomic analysis of the subcellular organelles containing a considerable number of highly hydrophobic membrane proteins should be performed by combined application of 1‐D and 2‐D electrophoresis.


Chemical Research in Toxicology | 2008

Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo.

Keisuke Ikehata; Tatyana Duzhak; Nadezhda A. Galeva; Tao Ji; Yakov M. Koen; Robert P. Hanzlik

Thiobenzamide (TB) is a potent hepatotoxin in rats, causing dose-dependent hyperbilirubinemia, steatosis, and centrolobular necrosis. These effects arise subsequent to and appear to result from the covalent binding of the iminosulfinic acid metabolite of TB to cellular proteins and phosphatidylethanolamine lipids [ Ji et al. ( 2007) Chem. Res. Toxicol. 20, 701- 708 ]. To better understand the relationship between the protein covalent binding and the toxicity of TB, we investigated the chemistry of the adduction process and the identity of the target proteins. Cytosolic and microsomal proteins isolated from the livers of rats treated with a hepatotoxic dose of [ carboxyl- (14)C]TB contained high levels of covalently bound radioactivity (25.6 and 36.8 nmol equiv/mg protein, respectively). These proteins were fractionated by two-dimensional gel electrophoresis, and radioactive spots (154 cytosolic and 118 microsomal) were located by phosphorimaging. Corresponding spots from animals treated with a 1:1 mixture of TB and TB- d 5 were similarly separated, the spots were excised, and the proteins were digested in gel with trypsin. Peptide mass mapping identified 42 cytosolic and 24 microsomal proteins, many of which appeared in more than one spot on the gel; however, only a few spots contained more than one identifiable protein. Eighty-six peptides carrying either a benzoyl or a benzimidoyl adduct on a lysine side chain were clearly recognized by their d 0/ d 5 isotopic signature (sometimes both in the same digest). Because model studies showed that benzoyl adducts do not arise by hydrolysis of benzimidoyl adducts, it was proposed that TB undergoes S-oxidation twice to form iminosulfinic acid 4 [PhC(NH)SO 2H], which either benzimidoylates a lysine side chain or undergoes hydrolysis to 9 [PhC(O)SO 2H] and then benzoylates a lysine side chain. The proteins modified by TB metabolites serve a range of biological functions and form a set that overlaps partly with the sets of proteins known to be modified by several other metabolically activated hepatotoxins. The relationship of the adduction of these target proteins to the cytotoxicity of reactive metabolites is discussed in terms of three currently popular mechanisms of toxicity: inhibition of enzymes important to the maintenance of cellular energy and homeostasis, the unfolded protein response, and interference with kinase-based signaling pathways that affect cell survival.


Plant Physiology | 2012

Direct infusion mass spectrometry of oxylipin-containing Arabidopsis membrane lipids reveals varied patterns in different stress responses

Hieu Sy Vu; Pamela Tamura; Nadezhda A. Galeva; Ratnesh Chaturvedi; Mary R. Roth; Todd D. Williams; Xuemin Wang; Jyoti Shah; Ruth Welti

Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol. The oxidized chains were identified at the level of chemical formula and included C18H27O3 (abbreviated 18:4-O, to indicate four double bond equivalents and one oxygen beyond the carbonyl group), C18H29O3 (18:3-O), C18H31O3 (18:2-O), C18H29O4 (18:3-2O), C18H31O4 (18:2-2O), and C16H23O3 (16:4-O). Mass spectral signals from the polar oxidized lipid (ox-lipid) species were quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P. syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid composition. Additionally, different stresses result in the production of varied amounts, different timing, and different compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stress-specific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.


Experimental Gerontology | 2006

Age-associated tyrosine nitration of rat skeletal muscle glycogen phosphorylase b: characterization by HPLC-nanoelectrospray-tandem mass spectrometry.

Victor S. Sharov; Nadezhda A. Galeva; Jaroslaw Kanski; Todd D. Williams; Christian Schöneich

We identified age-dependent post-translational modifications of skeletal muscle glycogen phosphorylase b (Ph-b), isolated from F1 hybrids of Fisher 344 x Brown Norway rats. Ph-b isolated from 34 months old rats showed a statistically significant decrease in specific activity compared to 6 months old animals: 13.8+/-0.7 vs. 20.6+/-0.8 U mg(-1) protein, respectively. Western blot analysis of the purified Ph-b with anti-3-NT antibodies revealed an age-dependent accumulation of 3-nitrotyrosine (3-NT), quantified by reverse-phase HPLC-UV analysis to increase from 0.05+/-0.03 to 0.34+/-0.11 (mol 3-NT/mol Ph-b) for 6 vs. 34 months old rats, respectively. HPLC-nanoelectrospray ionization-tandem mass spectrometry revealed the accumulation of 3-NT on Tyr113, Tyr161 and Tyr573. While nitration of Tyr113 was detected for both young and old rats, 3-NT at positions 161 and 573 was identified only for Ph-b isolated from 34 months old rats. The sequence of the rat muscle Ph-b was corrected based on our protein sequence mapping and a custom rat PHS2 sequence containing 17 differently located amino acid residues was used instead of the database sequence. The in vitro reaction of peroxynitrite with Ph-b resulted in the nitration of multiple Tyr residues at positions 51, 52, 113, 155, 185, 203, 262, 280, 404, 473, 731, and 732. Thus, the in vitro nitration conditions only mimic the nitration of a single Tyr residue observed in vivo suggesting alternative pathways controlling the accumulation of 3-NT in vivo. Our data show a correlation of age-dependent 3-NT accumulation with Ph-b inactivation.


Analytical Biochemistry | 2002

Two-dimensional separation of the membrane protein sarcoplasmic reticulum Ca-ATPase for high-performance liquid chromatography-tandem mass spectrometry analysis of posttranslational protein modifications.

Victor S. Sharov; Nadezhda A. Galeva; Tatyana V Knyushko; Diana J. Bigelow; Todd D. Williams; Christian Schöneich

For the characterization of posttranslational modifications of the sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA), we developed a two-dimensional separation protocol based on reversed-phase HPLC followed by SDS-PAGE and LC-MS/MS analysis of in-gel tryptic digests. Representative experiments are shown for the rabbit fast-twitch skeletal muscle isoform SERCA1. Matrix-assisted laser desorption-ionization and electrospray ionization-mass spectrometry analyses of SERCA1 tryptic digests revealed ca. 66% coverage of the protein sequence. This approach was used for the detection and quantitation of nitrotyrosine formation after exposure of SERCA1 to peroxynitrite in vitro. At molar ratios of nitrotyrosine to protein of 0.23 we confirmed by LC-MS/MS the nitration of predominantly Tyr(122) in the SERCA1 sequence.


Chemical Research in Toxicology | 2013

Protein Targets of Thioacetamide Metabolites in Rat Hepatocytes

Yakov M. Koen; Diganta Sarma; Heather Hajovsky; Nadezhda A. Galeva; Todd D. Williams; Jeffrey L. Staudinger; Robert P. Hanzlik

Thioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2. However, hepatocytes treated with TASO show extensive covalent binding to both lipids and proteins accompanied by extensive cytotoxicity. In this work, we treated rat hepatocytes with [(14)C]-TASO and submitted the mitochondrial, microsomal, and cytosolic fractions to 2DGE, which revealed a total of 321 radioactive protein spots. To facilitate the identification of target proteins and adducted peptides, we also treated cells with a mixture of TASO/[(13)C2D3]-TASO. Using a combination of 1DGE- and 2DGE-based proteomic approaches, we identified 187 modified peptides (174 acetylated, 50 acetimidoylated, and 37 in both forms) from a total of 88 nonredundant target proteins. Among the latter, 57 are also known targets of at least one other hepatotoxin. The formation of both amide- and amidine-type adducts to protein lysine side chains is in contrast to the exclusive formation of amidine-type adducts with PE phospholipids. Thiobenzamide (TB) undergoes the same two-step oxidative bioactivation as TA, and it also gives rise to both amide and amidine adducts on protein lysine side chains but only amidine adducts to PE lipids. Despite their similarity in functional group chemical reactivity, only 38 of 62 known TB target proteins are found among the 88 known targets of TASO. The potential roles of protein modification by TASO in triggering cytotoxicity are discussed in terms of enzyme inhibition, protein folding, and chaperone function, and the emerging role of protein acetylation in intracellular signaling and the regulation of biochemical pathways.


Analytical Biochemistry | 2011

A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides

Elena S. Dremina; Xiaobao Li; Nadezhda A. Galeva; Victor S. Sharov; John F. Stobaugh; Christian Schöneich

We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO(2))LER, was employed as a model for method validation. Furthermore, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to peroxynitrite in the total protein lysate of cultured C2C12 cells. The quantitation of 3-NT content in samples was achieved through either fluorescence spectrometry or boronate affinity chromatography with detection by specific fluorescence (excitation and emission wavelengths of 360 and 510 nm, respectively); the respective limits of detection were 95 and 68 nM (19 and 13 pmol total amount) of 3-NT. Importantly, the derivatized peptides show a strong retention on a synthetic boronate affinity column, containing sulfonamide-phenylboronic acid, under mild chromatographic conditions, affording a route to separate the derivatized peptides from large amounts (milligrams) of nonderivatized peptides and to enrich them for fluorescent detection and mass spectrometry (MS) identification. Tandem MS analysis identified chemical structures of peptide 3-NT fluorescent derivatives and revealed that the fluorescent derivatives undergo efficient backbone fragmentations, permitting sequence-specific identification of protein nitration at low concentrations of 3-NT in complex protein mixtures.


Apoptosis | 2014

Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

Christian Schöneich; Elena S. Dremina; Nadezhda A. Galeva; Victor S. Sharov

Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.


Journal of Neurochemistry | 2012

Decreases in Plasma Membrane Ca2+-ATPase in Brain Synaptic Membrane Rafts from Aged Rats

Lei Jiang; Misty D. Bechtel; Nadezhda A. Galeva; Todd D. Williams; Elias K. Michaelis; Mary L. Michaelis

Precise regulation of free intracellular Ca2+ concentrations [Ca2+]i is critical for normal neuronal function, and alterations in Ca2+ homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca2+]i is the plasma membrane Ca2+‐ATPase (PMCA), the high‐affinity transporter that fine tunes the cytosolic nanomolar levels of Ca2+. We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In this study, we isolated raft and non‐raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess calmodulin to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age‐related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity.

Collaboration


Dive into the Nadezhda A. Galeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Squier

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge