Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy Y. Liao is active.

Publication


Featured researches published by Nancy Y. Liao.


BMC Genomics | 2010

Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

Jong S. Leong; Stuart G. Jantzen; Kristian R. von Schalburg; Glenn A. Cooper; Amber M. Messmer; Nancy Y. Liao; Sarah Munro; Richard A. Moore; Robert A. Holt; Steven J.M. Jones; William S. Davidson; Ben F. Koop

BackgroundSalmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution.ResultsFrom existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates.Conclusions9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate.


Genome Biology | 2009

De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data

Scott DiGuistini; Nancy Y. Liao; Darren Platt; Gordon Robertson; Michael Seidel; Simon K. Chan; Roderick T. Docking; Inanc Birol; Robert A. Holt; Martin Hirst; Elaine R. Mardis; Marco A. Marra; Richard C. Hamelin; Jörg Bohlmann; Colette Breuil; Steven J.M. Jones

Sequencing-by-synthesis technologies can reduce the cost of generating de novo genome assemblies. We report a method for assembling draft genome sequences of eukaryotic organisms that integrates sequence information from different sources, and demonstrate its effectiveness by assembling an approximately 32.5 Mb draft genome sequence for the forest pathogen Grosmannia clavigera, an ascomycete fungus. We also developed a method for assessing draft assemblies using Illumina paired end read data and demonstrate how we are using it to guide future sequence finishing. Our results demonstrate that eukaryotic genome sequences can be accurately assembled by combining Illumina, 454 and Sanger sequence data.


Genome Biology | 2013

Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest

Christopher I. Keeling; Macaire M.S. Yuen; Nancy Y. Liao; Roderick T. Docking; Simon K. Chan; Greg Taylor; Diana L. Palmquist; Shaun D. Jackman; Anh Nguyen; Maria Li; Hannah Henderson; Jasmine K. Janes; Yongjun Zhao; Pawan Pandoh; Richard G. Moore; Felix A. H. Sperling; Dezene P. W. Huber; Inanc Birol; Steven J.M. Jones; Joerg Bohlmann

BackgroundThe mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests.ResultsWe developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insects biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle.ConclusionsDespite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen

Scott DiGuistini; Ye Wang; Nancy Y. Liao; Greg Taylor; Philippe Tanguay; Nicolas Feau; Bernard Henrissat; Simon K. Chan; Uljana Hesse-Orce; Sepideh Massoumi Alamouti; Clement K. M. Tsui; Roderick T. Docking; Anthony Levasseur; Sajeet Haridas; Gordon Robertson; Inanc Birol; Robert A. Holt; Marco A. Marra; Richard C. Hamelin; Martin Hirst; Steven J.M. Jones; Jörg Bohlmann; Colette Breuil

In western North America, the current outbreak of the mountain pine beetle (MPB) and its microbial associates has destroyed wide areas of lodgepole pine forest, including more than 16 million hectares in British Columbia. Grosmannia clavigera (Gc), a critical component of the outbreak, is a symbiont of the MPB and a pathogen of pine trees. To better understand the interactions between Gc, MPB, and lodgepole pine hosts, we sequenced the ∼30-Mb Gc genome and assembled it into 18 supercontigs. We predict 8,314 protein-coding genes, and support the gene models with proteome, expressed sequence tag, and RNA-seq data. We establish that Gc is heterothallic, and report evidence for repeat-induced point mutation. We report insights, from genome and transcriptome analyses, into how Gc tolerates conifer-defense chemicals, including oleoresin terpenoids, as they colonize a host tree. RNA-seq data indicate that terpenoids induce a substantial antimicrobial stress in Gc, and suggest that the fungus may detoxify these chemicals by using them as a carbon source. Terpenoid treatment strongly activated a ∼100-kb region of the Gc genome that contains a set of genes that may be important for detoxification of these host-defense chemicals. This work is a major step toward understanding the biological interactions between the tripartite MPB/fungus/forest system.


Insect Biochemistry and Molecular Biology | 2012

Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests

Christopher I. Keeling; Hannah Henderson; Maria Li; Mack Yuen; Erin L. Clark; Jordie D. Fraser; Dezene P. W. Huber; Nancy Y. Liao; T. Roderick Docking; Inanc Birol; Simon K. Chan; Greg Taylor; Diana L. Palmquist; Steven J.M. Jones; Joerg Bohlmann

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A regulatory toolbox of MiniPromoters to drive selective expression in the brain

Elodie Portales-Casamar; Douglas J. Swanson; Li Liu; Charles De Leeuw; Kathleen G. Banks; Shannan J. Ho Sui; Debra L. Fulton; Johar Ali; Mahsa Amirabbasi; David J. Arenillas; Nazar Babyak; Sonia F. Black; Russell J. Bonaguro; Erich Brauer; Tara R. Candido; Mauro Castellarin; Jing Chen; Ying Chen; Jason C. Y. Cheng; Vik Chopra; T. Roderick Docking; Lisa Dreolini; Cletus D'souza; Erin K. Flynn; Randy Glenn; Kristi Hatakka; Taryn Hearty; Behzad Imanian; Steven Jiang; Shadi Khorasan-zadeh

The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.


BMC Plant Biology | 2013

Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

Dawn E. Hall; Macaire M.S. Yuen; Sharon Jancsik; Alfonso Lara Quesada; Harpreet K. Dullat; Maria Li; Hannah Henderson; Adriana Arango-Velez; Nancy Y. Liao; Roderick T. Docking; Simon K. Chan; Janice E. K. Cooke; Colette Breuil; Steven J.M. Jones; Christopher I. Keeling; Jörg Bohlmann

BackgroundThe mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown.ResultsWe report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species.ConclusionIn the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.


Journal of Bacteriology | 2011

Genome Sequence of Mycoplasma capricolum subsp. capripneumoniae Strain M1601

Yuefeng Chu; Peng-Chen Gao; Ping Zhao; Ying He; Nancy Y. Liao; Shaun D. Jackman; Yongjun Zhao; Inanc Birol; Xiaobo Duan; Zhongxin Lu

Mycoplasma capricolum subsp. capripneumoniae is the causative agent of contagious caprine pleuropneumonia, a devastating disease of goats listed by the World Organization for Animal Health. Here we report the first complete genome sequence of this organism (strain M1601, a clinically isolated strain from China).


Genome Research | 2006

Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

Ryan D. Morin; Elbert Chang; Anca Petrescu; Nancy Y. Liao; Malachi Griffith; Robert Kirkpatrick; Yaron S N Butterfield; Alice C. Young; Jeffrey Stott; Sarah Barber; Ryan Babakaiff; Mark Dickson; Corey Matsuo; David H. W. Wong; George S. Yang; Duane E. Smailus; Keith Wetherby; Peggy N. Kwong; Jane Grimwood; Charles P. Brinkley; Mabel Brown-John; Natalie D. Reddix-Dugue; Michael Mayo; Jeremy Schmutz; Jaclyn Beland; Morgan Park; Susan Gibson; Teika Olson; Gerard G. Bouffard; Miranda Tsai


Gene | 2007

Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development

Fred Y. Peng; Karen E. Reid; Nancy Y. Liao; James Schlosser; Diego Lijavetzky; Robert A. Holt; José Miguel Martínez Zapater; Steven J.M. Jones; Marco A. Marra; Jörg Bohlmann; Steven T. Lund

Collaboration


Dive into the Nancy Y. Liao's collaboration.

Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Inanc Birol

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Simon K. Chan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher I. Keeling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Colette Breuil

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Henderson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jörg Bohlmann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Maria Li

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge