Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi J. Halas is active.

Publication


Featured researches published by Naomi J. Halas.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance

L. R. Hirsch; R. J. Stafford; J. A. Bankson; S. R. Sershen; B. Rivera; Roger E. Price; J. D. Hazle; Naomi J. Halas; Jennifer L. West

Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6°C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10°C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.


Nature Materials | 2010

The Fano resonance in plasmonic nanostructures and metamaterials

Boris Luk'yanchuk; N.I. Zheludev; Stefan A. Maier; Naomi J. Halas; Peter Nordlander; Harald Giessen; Chong Tow Chong

Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.


Chemical Physics Letters | 1998

Nanoengineering of optical resonances

Steven J. Oldenburg; Richard D. Averitt; Sarah L. Westcott; Naomi J. Halas

Abstract Metal nanoshells, consisting of a dielectric core with a metallic shell of nanometer thickness, are a new, composite nanoparticle whose optical resonance can be “designed in” in a controlled manner. By varying the relative dimensions of the core and shell, the optical resonance of these nanoparticles can be varied over hundreds of nanometers in wavelength, across the visible and into the infrared region of the spectrum. We report a general approach to the making of metal nanoshell composite nanoparticles based on molecular self-assembly and colloid reduction chemistry.


Science | 2011

Photodetection with Active Optical Antennas

Mark W. Knight; Heidar Sobhani; Peter Nordlander; Naomi J. Halas

An active optical antenna-diode combines the functions of light-harvesting and excited-electron injection. Nanoantennas are key optical components for light harvesting; photodiodes convert light into a current of electrons for photodetection. We show that these two distinct, independent functions can be combined into the same structure. Photons coupled into a metallic nanoantenna excite resonant plasmons, which decay into energetic, “hot” electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. This dual-function structure is a highly compact, wavelength-resonant, and polarization-specific light detector, with a spectral response extending to energies well below the semiconductor band edge.


Science | 2010

Self-Assembled Plasmonic Nanoparticle Clusters

Jonathan A. Fan; Chihhui Wu; Kui Bao; Jiming Bao; Rizia Bardhan; Naomi J. Halas; Vinothan N. Manoharan; Peter Nordlander; Gennady Shvets; Federico Capasso

Optical Nanoengineering Optics and electronics operate at very different length scales. Surface plasmons are light-induced electronic excitations that are being pursued as a route to bridge the length scales and bring the processing speed offered by optical communication down to the size scales of electronic chip circuitry. Now, Fan et al. (p. 1135) describe the self-assembly of nanoscale dielectric particles coated with gold. Functionalization of the gold surface with polymer ligands allowed controlled production of clusters of nanoparticles. The optical properties of the self-assembled nanostructures depended on the number of components within the cluster and each structure could be selected for its unique optical properties. Such a bottom-up approach should help in fabricating designed optical circuits on the nanoscale. A hierarchy of nanoscale optical structures is created from nanoparticles that have metal shells and dielectric cores. The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.


Technology in Cancer Research & Treatment | 2004

Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer

Christopher Loo; Alex W. H. Lin; L. R. Hirsch; Min-Ho Lee; Jennifer K. Barton; Naomi J. Halas; Jennifer L. West; Rebekah A. Drezek

Metal nanoshells are a novel type of composite spherical nanoparticle consisting of a dielectric core covered by a thin metallic shell which is typically gold. Nanoshells possess highly favorable optical and chemical properties for biomedical imaging and therapeutic applications. By varying the relative the dimensions of the core and the shell, the optical resonance of these nanoparticles can be precisely and systematically varied over a broad region ranging from the near-UV to the mid-infrared. This range includes the near-infrared (NIR) wavelength region where tissue transmissivity peaks. In addition to spectral tunability, nanoshells offer other advantages over conventional organic dyes including improved optical properties and reduced susceptibility to chemical/thermal denaturation. Furthermore, the same conjugation protocols used to bind biomolecules to gold colloid are easily modified for nanoshells. In this article, we first review the synthesis of gold nanoshells and illustrate how the core/shell ratio and overall size of a nanoshell influences its scattering and absorption properties. We then describe several examples of nanoshell-based diagnostic and therapeutic approaches including the development of nanoshell bioconjugates for molecular imaging, the use of scattering nanoshells as contrast agents for optical coherence tomography (OCT), and the use of absorbing nanoshells in NIR thermal therapy of tumors.


Nature Nanotechnology | 2015

Plasmon-induced hot carrier science and technology

Mark L. Brongersma; Naomi J. Halas; Peter Nordlander

The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.


Nano Letters | 2008

Symmetry Breaking in Plasmonic Nanocavities : Subradiant LSPR Sensing and a Tunable Fano Resonance

Feng Hao; Yannick Sonnefraud; Pol Van Dorpe; Stefan A. Maier; Naomi J. Halas; Peter Nordlander

A metallic nanostructure consisting of a disk inside a thin ring supports superradiant and very narrow subradiant modes. Symmetry breaking in this structure enables a coupling between plasmon modes of differing multipolar order, resulting in a tunable Fano resonance. The LSPR sensitivities of the subradiant and Fano resonances are predicted to be among the largest yet for individual nanostructures.


Nano Letters | 2013

Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au

Shaunak Mukherjee; Florian Libisch; Nicolas Large; Oara Neumann; Lisa V. Brown; Jin Cheng; J. Britt Lassiter; Emily A. Carter; Peter Nordlander; Naomi J. Halas

Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.


ACS Nano | 2008

Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.

Fei Le; Daniel W. Brandl; Yaroslav A. Urzhumov; Hui Wang; Janardan Kundu; Naomi J. Halas; Javier Aizpurua; Peter Nordlander

Nanoshell arrays have recently been found to possess ideal properties as a substrate for combining surface enhanced raman scattering (SERS) and surface enhanced infrared absorption (SEIRA) spectroscopies, with large field enhancements at the same spatial locations on the structure. For small interparticle distances, the multipolar plasmon resonances of individual nanoshells hybridize and form red-shifted bands, a relatively narrow band in the near-infrared (NIR) originating from quadrupolar nanoshell resonances enhancing SERS, and a very broadband in the mid-infrared (MIR) arising from dipolar resonances enhancing SEIRA. The large field enhancements in the MIR and at longer wavelengths are due to the lightning-rod effect and are well described with an electrostatic model.

Collaboration


Dive into the Naomi J. Halas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge