Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oara Neumann is active.

Publication


Featured researches published by Oara Neumann.


Nano Letters | 2013

Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au

Shaunak Mukherjee; Florian Libisch; Nicolas Large; Oara Neumann; Lisa V. Brown; Jin Cheng; J. Britt Lassiter; Emily A. Carter; Peter Nordlander; Naomi J. Halas

Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.


ACS Nano | 2013

Solar Vapor Generation Enabled by Nanoparticles

Oara Neumann; Alexander S. Urban; Jared K. Day; Surbhi Lal; Peter Nordlander; Naomi J. Halas

Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.


Nano Letters | 2008

Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes

Nche T. Fofang; Tae-Ho Park; Oara Neumann; Nikolay A. Mirin; Peter Nordlander; Naomi J. Halas

Stable Au nanoshell-J-aggregate complexes are formed that exhibit coherent coupling between the localized plasmons of a nanoshell and the excitons of molecular J-aggregates adsorbed on its surface. By tuning the nanoshell plasmon energies across the exciton line of the J-aggregate, plasmon-exciton coupling energies for these complexes are obtained. The strength of this interaction is dependent on the specific plasmon mode of the nanoparticle coupled to the J-aggregate exciton. From a model based on Gans theory, we obtain an expression for the plasmon-exciton hybridized states of the complex.


Nano Letters | 2009

Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH

Dongmao Zhang; Oara Neumann; Hui Wang; Virany M. Yuwono; Aoune Barhoumi; Michael Perham; Jeffrey D. Hartgerink; Pernilla Wittung-Stafshede; Naomi J. Halas

Protein-nanoparticle interactions are of central importance in the biomedical applications of nanoparticles, as well as in the growing biosafety concerns of nanomaterials. We observe that gold nanoparticles initiate protein aggregation at physiological pH, resulting in the formation of extended, amorphous protein-nanoparticle assemblies, accompanied by large protein aggregates without embedded nanoparticles. Proteins at the Au nanoparticle surface are observed to be partially unfolded; these nanoparticle-induced misfolded proteins likely catalyze the observed aggregate formation and growth.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

Oara Neumann; Curtis Feronti; Albert D. Neumann; Anjie Dong; Kevin Schell; Benjamin Lu; Eric S. Kim; Mary Quinn; Shea Thompson; Nathaniel K. Grady; Peter Nordlander; Maria Oden; Naomi J. Halas

The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.


ACS Nano | 2014

Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells

Ciceron Ayala-Orozco; Cordula Urban; Mark W. Knight; Alexander S. Urban; Oara Neumann; Sandra Whaley Bishnoi; Shaunak Mukherjee; Amanda M. Goodman; Heather Charron; Tamika Mitchell; Martin Shea; Ronita Roy; Sarmistha Nanda; Rachel Schiff; Naomi J. Halas; Amit Joshi

Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy.


Nature Communications | 2014

Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance

Yu Zhang; Yu-Rong Zhen; Oara Neumann; Jared K. Day; Peter Nordlander; Naomi J. Halas

Plasmonic nanostructures are of particular interest as substrates for the spectroscopic detection and identification of individual molecules. Single-molecule sensitivity Raman detection has been achieved by combining resonant molecular excitation with large electromagnetic field enhancements experienced by a molecule associated with an interparticle junction. Detection of molecules with extremely small Raman cross-sections (~10(-30) cm(2) sr(-1)), however, has remained elusive. Here we show that coherent anti-Stokes Raman spectroscopy (CARS), a nonlinear spectroscopy of great utility and potential for molecular sensing, can be used to obtain single-molecule detection sensitivity, by exploiting the unique light harvesting properties of plasmonic Fano resonances. The CARS signal is enhanced by ~11 orders of magnitude relative to spontaneous Raman scattering, enabling the detection of single molecules, which is verified using a statistically rigorous bi-analyte method. This approach combines unprecedented single-molecule spectral sensitivity with plasmonic substrates that can be fabricated using top-down lithographic strategies.


ACS Nano | 2014

The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au-Ag Nanoshells

Amanda M. Goodman; Yang Cao; Cordula Urban; Oara Neumann; Ciceron Ayala-Orozco; Mark W. Knight; Amit Joshi; Peter Nordlander; Naomi J. Halas

Photothermal ablation based on resonant illumination of near-infrared-absorbing noble metal nanoparticles that have accumulated in tumors is a highly promising cancer therapy, currently in multiple clinical trials. A crucial aspect of this therapy is the nanoparticle size for optimal tumor uptake. A class of nanoparticles known as hollow Au (or Au–Ag) nanoshells (HGNS) is appealing because near-IR resonances are achievable in this system with diameters less than 100 nm. However, in this study, we report a surprising finding that in vivo HGNS are unstable, fragmenting with the Au and the remnants of the sacrificial Ag core accumulating differently in various organs. We synthesized 43, 62, and 82 nm diameter HGNS through a galvanic replacement reaction, with nanoparticles of all sizes showing virtually identical NIR resonances at ∼800 nm. A theoretical model indicated that alloying, residual Ag in the nanoparticle core, nanoparticle porosity, and surface defects all contribute to the presence of the plasmon resonance at the observed wavelength, with the major contributing factor being the residual Ag. While PEG functionalization resulted in stable nanoparticles under laser irradiation in solution, an anomalous, strongly element-specific biodistribution observed in tumor-bearing mice suggests that an avid fragmentation of all three sizes of nanoparticles occurred in vivo. Stability studies across a wide range of pH environments and in serum confirmed HGNS fragmentation. These results show that NIR resonant HGNS contain residual Ag, which does not stay contained within the HGNS in vivo. This demonstrates the importance of tracking both materials of a galvanic replacement nanoparticle in biodistribution studies and of performing thorough nanoparticle stability studies prior to any intended in vivo trial application.


Analytical Chemistry | 2009

Direct Optical Detection of Aptamer Conformational Changes Induced by Target Molecules

Oara Neumann; Dongmao Zhang; Felicia Tam; Surbhi Lal; Pernilla Wittung-Stafshede; Naomi J. Halas

Aptamers are single-stranded DNA/RNA oligomers that fold into three-dimensional conformations in the presence of specific molecular targets. Surface-enhanced Raman spectroscopy (SERS) of thiol-bound DNA aptamer self-assembled monolayers on Au nanoshell surfaces provides a direct, label-free detection method for the interaction of DNA aptamers with target molecules. A spectral cross-correlation function, Gamma, is shown to be a useful metric to quantify complex changes in the SERS spectra resulting from conformational changes in the aptamer induced by target analytes. While the pristine, unexposed anti-PDGF (PDGF = platelet-derived growth factor) aptamer yields highly reproducible spectra with Gamma = 0.91 +/- 0.01, following incubation with PDGF, the reproducibility of the SERS spectra is dramatically reduced, yielding Gamma = 0.67 +/- 0.02. This approach also allows us to discriminate the response of a cocaine aptamer to its target from its weaker response to nonspecific analyte molecules.


Nano Letters | 2015

Nanoparticle-Mediated, Light-Induced Phase Separations

Oara Neumann; Albert D. Neumann; Edgar Silva; Ciceron Ayala-Orozco; Shu Tian; Peter Nordlander; Naomi J. Halas

Nanoparticles that both absorb and scatter light, when dispersed in a liquid, absorb optical energy and heat a reduced fluid volume due to the combination of multiple scattering and optical absorption. This can induce a localized liquid-vapor phase change within the reduced volume without the requirement of heating the entire fluid. For binary liquid mixtures, this process results in vaporization of the more volatile component of the mixture. When subsequently condensed, these two steps of vaporization and condensation constitute a distillation process mediated by nanoparticles and driven by optical illumination. Because it does not require the heating of a large volume of fluid, this process requires substantially less energy than traditional distillation using thermal sources. We investigated nanoparticle-mediated, light-induced distillation of ethanol-H2O and 1-propanol-H2O mixtures, using Au-SiO2 nanoshells as the absorber-scatterer nanoparticle and nanoparticle-resonant laser irradiation to drive the process. For ethanol-H2O mixtures, the mole fraction of ethanol obtained in the light-induced process is substantially higher than that obtained by conventional thermal distillation, essentially removing the ethanol-H2O azeotrope that limits conventional distillation. In contrast, for 1-propanol-H2O mixtures the distillate properties resulting from light-induced distillation were very similar to those obtained by thermal distillation. In the 1-propanol-H2O system, a nanoparticle-mediated, light-induced liquid-liquid phase separation was also observed.

Collaboration


Dive into the Oara Neumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Whaley Bishnoi

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongmao Zhang

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge