Natalie S. Betts
Australian Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalie S. Betts.
Bioresource Technology | 2015
Kendall R. Corbin; Yves S. Y. Hsieh; Natalie S. Betts; Caitlin S. Byrt; Marilyn Henderson; Jozsef Stork; Seth DeBolt; Geoffrey B. Fincher; Rachel A. Burton
Global grape production could generate up to 13 Mt/yr of wasted biomass. The compositions of Cabernet Sauvignon (red marc) and Sauvignon Blanc (white marc) were analyzed with a view to using marc as raw material for biofuel production. On a dry weight basis, 31-54% w/w of the grape marc consisted of carbohydrate, of which 47-80% was soluble in aqueous media. Ethanol insoluble residues consisted mainly of polyphenols, pectic polysaccharides, heteroxylans and cellulose. Acid and thermal pre-treatments were investigated for their effects on subsequent cellulose saccharification. A 0.5M sulfuric acid pre-treatment yielded a 10% increase in the amount of liberated glucose after enzymatic saccharification. The theoretical amount of bioethanol that could be produced by fermentation of grape marc was up to 400 L/t. However, bioethanol from only soluble carbohydrates could yield 270 L/t, leaving a polyphenol enriched fraction that may be used in animal feed or as fertilizer.
PLOS ONE | 2015
Kendall R. Corbin; Caitlin S. Byrt; Stefan Bauer; Seth DeBolt; Don Chambers; Joseph A. M. Holtum; Ghazwan Karem; Marilyn Henderson; Jelle Lahnstein; Cherie T. Beahan; Antony Bacic; Geoffrey B. Fincher; Natalie S. Betts; Rachel A. Burton
Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like—rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47–50% w/w) and non-cellulosic polysaccharides (16–22% w/w), and whole leaves were low in lignin (9–13% w/w). Of the dry mass of whole Agave leaves, 85–95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41–48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.
Journal of Integrative Plant Biology | 2015
Riksfardini A. Ermawar; Helen M. Collins; Caitlin S. Byrt; Natalie S. Betts; Marilyn Henderson; Neil J. Shirley; Julian G. Schwerdt; Jelle Lahnstein; Geoffrey B. Fincher; Rachel A. Burton
In cereals, the presence of soluble polysaccharides including (1,3;1,4)-β-glucan has downstream implications for human health, animal feed and biofuel applications. Sorghum bicolor (L.) Moench is a versatile crop, but there are limited reports regarding the content of such soluble polysaccharides. Here, the amount of (1,3;1,4)-β-glucan present in sorghum tissues was measured using a Megazyme assay. Very low amounts were present in the grain, ranging from 0.16%-0.27% (w/w), while there was a greater quantity in vegetative tissues at 0.12-1.71% (w/w). The fine structure of (1,3;1,4)-β-glucan, as denoted by the ratio of cellotriosyl and cellotetraosyl residues, was assessed by high performance liquid chromatography (HPLC) and ranged from 2.6-3:1 in the grain, while ratios in vegetative tissues were lower at 2.1-2.6:1. The distribution of (1,3;1,4)-β-glucan was examined using a specific antibody and observed with fluorescence and transmission electron microscopy. Micrographs showed a variable distribution of (1,3;1,4)-β-glucan influenced by temporal and spatial factors. The sorghum orthologs of genes implicated in the synthesis of (1,3;1,4)-β-glucan in other cereals, such as the Cellulose synthase-like (Csl) F and H gene families were defined. Transcript profiling of these genes across sorghum tissues was carried out using real-time quantitative polymerase chain reaction, indicating that, as in other cereals, CslF6 transcripts dominated.
Frontiers in Plant Science | 2017
Natalie S. Betts; Laura G. Wilkinson; Shi F. Khor; Neil J. Shirley; Finn Lok; Birgitte Skadhauge; Rachel A. Burton; Geoffrey B. Fincher; Helen M. Collins
Many biological processes, such as cell wall hydrolysis and the mobilisation of nutrient reserves from the starchy endosperm, require stringent regulation to successfully malt barley (Hordeum vulgare) grain in an industrial context. Much of the accumulated knowledge defining these events has been collected from individual, unrelated experiments, and data have often been extrapolated from Petri dish germination, rather than malting, experiments. Here, we present comprehensive morphological, biochemical, and transcript data from a simulated malt batch of the three elite malting cultivars Admiral, Navigator, and Flagship, and the feed cultivar Keel. Activities of lytic enzymes implicated in cell wall and starch depolymerisation in germinated grain have been measured, and transcript data for published cell wall hydrolytic genes have been provided. It was notable that Flagship and Keel exhibited generally similar patterns of enzyme and transcript expression, but exhibited a few key differences that may partially explain Flagships superior malting qualities. Admiral and Navigator also showed matching expression patterns for these genes and enzymes, but the patterns differed from those of Flagship and Keel, despite Admiral and Navigator having Keel as a common ancestor. Overall (1,3;1,4)-β-glucanase activity differed between cultivars, with lower enzyme levels and concomitantly higher amounts of (1,3;1,4)-β-glucan in the feed variety, Keel, at the end of malting. Transcript levels of the gene encoding (1,3;1,4)-β-glucanase isoenzyme EI were almost three times higher than those encoding isoenzyme EII, suggesting a previously unrecognised importance for isoenzyme EI during malting. Careful morphological examination showed that scutellum epithelial cells in mature dry grain are elongated but expand no further as malting progresses, in contrast to equivalent cells in other cereals, perhaps demonstrating a morphological change in this critical organ over generations of breeding selection. Fluorescent immuno-histochemical labelling revealed the presence of pectin in the nucellus and, for the first time, significant amounts of callose throughout the starchy endosperm of mature grain.
Plant Science | 2016
Suong Cu; Helen M. Collins; Natalie S. Betts; Timothy J. March; A Janusz; Dc Stewart; Birgitte Skadhauge; J. Eglinton; Bianca Kyriacou; Alan Little; Rachel A. Burton; Geoffrey B. Fincher
Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries.
PLOS ONE | 2016
Caitlin S. Byrt; Natalie S. Betts; Hwei-Ting Tan; Wai Li Lim; Riksfardini A. Ermawar; Hai Yen Nguyen; Neil J. Shirley; Jelle Lahnstein; Kendall R. Corbin; Geoffrey B. Fincher; Vic Knauf; Rachel A. Burton
Sorghum vegetative tissues are becoming increasingly important for biofuel production. The composition of sorghum stem tissues is influenced by genotype, environment and photoperiod sensitivity, and varies widely between varieties and also between different stem tissues (outer rind vs inner pith). Here, the amount of cellulose, (1,3;1,4)-β-glucan, arabinose and xylose in the stems of twelve diverse sorghum varieties, including four photoperiod-sensitive varieties, was measured. At maturity, most photoperiod-insensitive lines had 1% w/w (1,3;1,4)-β-glucan in stem pith tissue whilst photoperiod-sensitive varieties remained in a vegetative stage and accumulated up to 6% w/w (1,3;1,4)-β-glucan in the same tissue. Three sorghum lines were chosen for further study: a cultivated grain variety (Sorghum bicolor BTx623), a sweet variety (S. bicolor Rio) and a photoperiod-sensitive wild line (S. bicolor ssp. verticilliflorum Arun). The Arun line accumulated 5.5% w/w (1,3;1,4)-β-glucan and had higher SbCslF6 and SbCslH3 transcript levels in pith tissues than did photoperiod-insensitive varieties Rio and BTx623 (<1% w/w pith (1,3;1,4)-β-glucan). To assess the digestibility of the three varieties, stem tissue was treated with either hydrolytic enzymes or dilute acid and the release of fermentable glucose was determined. Despite having the highest lignin content, Arun yielded significantly more glucose than the other varieties, and theoretical calculation of ethanol yields was 10 344 L ha-1 from this sorghum stem tissue. These data indicate that sorghum stem (1,3;1,4)-β-glucan content may have a significant effect on digestibility and bioethanol yields. This information opens new avenues of research to generate sorghum lines optimised for biofuel production.
Biofuel crops: production, physiology and genetics | 2013
Caitlin S. Byrt; Natalie S. Betts; Naser Farrokhi; Rachel A. Burton
(ed. B.P. Singh) 135 (Pauly and Keegstra, 2008). Plants synthesize cellulose from glucose produced by photosynthesis. Chains of cellulose in the primary cell wall, the wall made during rapid growth, are less ordered than those in the secondary cell wall, which thickens once growth has ceased. In the secondary cell wall, the chains of cellulose are in a densely packed, highly crystalline arrangement that is more difficult to degrade. Non-cellulosic polysaccharides are a heterogeneous mixture of molecules whose profile in the cell wall differs by species, tissue, age and even environmental conditions under which the plant was grown. They form a flexible gel-like matrix that links the rigid, crystalline cellulose with the protective lignin sheath while allowing water-soluble molecules to permeate the cell wall (Burton et al., 2010a). Lignin is a non-linear molecule consisting predominantly of phenolic monomers. It provides structural support to the plant and its hydrophobicity plays an important role in water movement (Vanholme et al., 2010).
Scientific Reports | 2018
Matthew Aubert; Stewart Coventry; Neil J. Shirley; Natalie S. Betts; Tobias Würschum; Rachel A. Burton; Matthew R. Tucker
The aleurone is a critical component of the cereal seed and is located at the periphery of the starchy endosperm. During germination, the aleurone is responsible for releasing hydrolytic enzymes that degrade cell wall polysaccharides and starch granules, which is a key requirement for barley malt production. Inter- and intra-species differences in aleurone layer number have been identified in the cereals but the significance of this variation during seed development and germination remains unclear. In this study, natural variation in mature aleurone features was examined in a panel of 33 Hordeum vulgare (barley) genotypes. Differences were identified in the number of aleurone cell layers, the transverse thickness of the aleurone and the proportion of aleurone relative to starchy endosperm. In addition, variation was identified in the activity of hydrolytic enzymes that are associated with germination. Notably, activity of the free fraction of β-amylase (BMY), but not the bound fraction, was increased at grain maturity in barley varieties possessing more aleurone. Laser capture microdissection (LCM) and transcriptional profiling confirmed that HvBMY1 is the most abundant BMY gene in developing grain and accumulates in the aleurone during early stages of grain fill. The results reveal a link between molecular pathways influencing early aleurone development and increased levels of free β-amylase enzyme, potentially highlighting the aleurone as a repository of free β-amylase at grain maturity.
Plant Journal | 2017
Natalie S. Betts; Oliver Berkowitz; Ruijie Liu; Helen M. Collins; Birgitte Skadhauge; Christoph Dockter; Rachel A. Burton; James Whelan; Geoffrey B. Fincher
Bioenergy Research | 2016
Kendall R. Corbin; Natalie S. Betts; Nick van Holst; Vladimir Jiranek; Don Chambers; Caitlin S. Byrt; Geoffrey B. Fincher; Rachel A. Burton