Nathalie Picault
University of Perpignan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Picault.
Biochemical Journal | 2008
Luigi Palmieri; Nathalie Picault; Roberto Arrigoni; Evelyne Besin; Ferdinando Palmieri; Michael Hodges
Screening of the Arabidopsis thaliana genome revealed three potential homologues of mammalian and yeast mitochondrial DICs (dicarboxylate carriers) designated as DIC1, DIC2 and DIC3, each belonging to the mitochondrial carrier protein family. DIC1 and DIC2 are broadly expressed at comparable levels in all the tissues investigated. DIC1-DIC3 have been reported previously as uncoupling proteins, but direct transport assays with recombinant and reconstituted DIC proteins clearly demonstrate that their substrate specificity is unique to plants, showing the combined characteristics of the DIC and oxaloacetate carrier in yeast. Indeed, the Arabidopsis DICs transported a wide range of dicarboxylic acids including malate, oxaloacetate and succinate as well as phosphate, sulfate and thiosulfate at high rates, whereas 2-oxoglutarate was revealed to be a very poor substrate. The role of these plant mitochondrial DICs is discussed with respect to other known mitochondrial carrier family members including uncoupling proteins. It is proposed that plant DICs constitute the membrane component of several metabolic processes including the malate-oxaloacetate shuttle, the most important redox connection between the mitochondria and the cytosol.
Genome Research | 2014
Moaine El Baidouri; Marie-Christine Carpentier; Richard Cooke; Dongying Gao; Eric Lasserre; Christel Llauro; Marie Mirouze; Nathalie Picault; Scott A. Jackson; Olivier Panaud
Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution.
Plant Journal | 2009
Nathalie Picault; Christian Chaparro; Benoît Piégu; Willfried Stenger; Damien Formey; Cristel Llauro; Julie Descombin; François Sabot; Eric Lasserre; Donaldo Meynard; Emmanuel Guiderdoni; Olivier Panaud
Transposable elements are ubiquitous components of plant genomes. When active, these mobile elements can induce changes in the genome at both the structural and functional levels. Availability of the complete genome sequence for several model plant species provides the opportunity to study TEs in plants at an unprecedented scale. In the case of rice, annotation of the genomic sequence of the variety Nipponbare has revealed that TE-related sequences form more than 25% of its genome. However, most of the elements found are inactive, either because of structural alterations or because they are the target of various silencing pathways. In this paper, we propose a new post-genomic strategy aimed at identifying active TEs. Our approach relies on transcript profiling of TE-related sequences using a tiling microarray. We applied it to a particular class of TEs, the LTR retrotransposons. A transcript profiling assay of rice calli led to identification of a new transpositionally active family, named Lullaby. We provide a complete structural description of this element. We also show that it has recently been active in planta in rice, and discuss its phylogenetic relationships with Tos17, the only other active LTR retrotransposon described so far in the species.
Rice | 2015
Taciane Finatto; Antonio Costa de Oliveira; Cristian Chaparro; Luciano Carlos da Maia; Daniel da Rosa Farias; Leomar Guilherme Woyann; Claudete Clarice Mistura; Adriana P Soares-Bresolin; Christel Llauro; Olivier Panaud; Nathalie Picault
BackgroundIron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe2+) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution.ResultsA large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs.ConclusionThe short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.
Pest Management Science | 2012
Christophe Calvayrac; Fabrice Martin-Laurent; Alexia Faveaux; Nathalie Picault; Olivier Panaud; Camille-Michel Coste; Hanene Chaabane; Jean-François Cooper
BACKGROUND The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway. RESULTS Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles. CONCLUSION Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.
Frontiers in Plant Science | 2014
Benoît Drogue; Hervé Sanguin; Amel Chamam; Michael Mozar; Christel Llauro; Olivier Panaud; Claire Prigent-Combaret; Nathalie Picault; Florence Wisniewski-Dyé
Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice cooperation.
Archive | 2004
Ferdinando Palmieri; Nathalie Picault; Luigi Palmieri; Michael Hodges
The metabolic communication between plant mitochondria and the cytosol requires the flux of metabolites, nucleotides and cofactors across the inner mitochondrial membrane. This is accomplished by a family of mitochondrial carrier pro-teins (better characterized in animal and yeast) that span the inner membrane lipid bilayer and share distinct common sequence features. Early studies, using isolated plant mitochondria and partially purified membrane proteins, revealed the existence of several mitochondrial transport activities. However, molecular research on the proteins responsible for these activities and their genes is sparse. The in silico analysis of the complete Arabidopsis thaliana genome has revealed almost 60 genes encoding putative members of the mitochondrial carrier family. To identify and characterize plant mitochondrial carriers, recombinant protein technology and functional reconstitution techniques developed for animal and yeast carrier proteins, together with a wide-range of recently developed functional-genomic tools, are currency being exploited. This has led to the recent functional identification of several plant mitochondrial carrier family members. These achievements explain and extend pre-genomic findings. This information will be important in the quest to better understand mitochondrial function in plant cell metabolism at the integrative level.
Nature plants | 2018
Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Thibault Leroy; Florent Murat; Sébastien Duplessis; Sébastien Faye; Nicolas Francillonne; Karine Labadie; Grégoire Le Provost; Isabelle Lesur; Jérôme Bartholomé; Patricia Faivre-Rampant; Annegret Kohler; Jean-Charles Leplé; Nathalie Chantret; Jun Chen; Anne Dievart; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Marie-Béatrice Bogeat-Triboulot; Marie-Lara Bouffaud; Benjamin Brachi; Emilie Chancerel; David Cohen; Arnaud Couloux; Corinne Da Silva
Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.Oaks can live hundreds of years. Comparative genomics using a high-quality genome sequence provides new insights that may explain tree longevity. Samples from branches and corresponding acorns also help quantify heritable somatic mutations.
Genome Research | 2006
Benoît Piégu; Romain Guyot; Nathalie Picault; Anne Roulin; Abhijit Saniyal; HyeRan Kim; Kristi Collura; Darshan S. Brar; Scott A. Jackson; Rod A. Wing; Olivier Panaud
Archive | 2011
François Sabot; Nathalie Picault; Moaine Elbaidouri; Christel Llauro; Cristian Chaparro; Benoît Piégu; Anne Roulin; Emmanuel Guiderdoni; M. Delabastide; W. R. McCombie; Olivier Panaud