Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Pierrot is active.

Publication


Featured researches published by Nathalie Pierrot.


Biochemical Journal | 2010

Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia

Elsa Wiame; Donatienne Tyteca; Nathalie Pierrot; François Collard; Mustapha Amyere; Gaëtane Noël; Jonathan Desmedt; Marie‑Cécile Nassogne; Miikka Vikkula; Jean-Noël Octave; Marie-Françoise Vincent; Pierre J. Courtoy; Eugen Boltshauser; Emile Van Schaftingen

The brain-specific compound NAA (N-acetylaspartate) occurs almost exclusively in neurons, where its concentration reaches approx. 20 mM. Its abundance is determined in patients by MRS (magnetic resonance spectroscopy) to assess neuronal density and health. The molecular identity of the NAT (N-acetyltransferase) that catalyses NAA synthesis has remained unknown, because the enzyme is membrane-bound and difficult to purify. Database searches indicated that among putative NATs (i.e. proteins homologous with known NATs, but with uncharacterized catalytic activity) encoded by the human and mouse genomes two were almost exclusively expressed in brain, NAT8L and NAT14. Transfection studies in HEK-293T [human embryonic kidney-293 cells expressing the large T-antigen of SV40 (simian virus 40)] indicated that NAT8L, but not NAT14, catalysed the synthesis of NAA from L-aspartate and acetyl-CoA. The specificity of NAT8L, its Km for aspartate and its sensitivity to detergents are similar to those described for brain Asp-NAT. Confocal microscopy analysis of CHO (Chinese-hamster ovary) cells and neurons expressing recombinant NAT8L indicates that it is associated with the ER (endoplasmic reticulum), but not with mitochondria. A mutation search in the NAT8L gene of the only patient known to be deficient in NAA disclosed the presence of a homozygous 19 bp deletion, resulting in a change in reading frame and the absence of production of a functional protein. We conclude that NAT8L, a neuron-specific protein, is responsible for NAA synthesis and is mutated in primary NAA deficiency (hypoacetylaspartia). The molecular identification of this enzyme will lead to new perspectives in the clarification of the function of this most abundant amino acid derivative in neurons and for the diagnosis of hypoacetylaspartia in other patients.


Journal of Biological Chemistry | 2006

Calcium-mediated transient phosphorylation of tau and amyloid precursor protein followed by intraneuronal amyloid-beta accumulation.

Nathalie Pierrot; Susana Ferrao Santos; Christine Feyt; Marina Morel; Jean Pierre Brion; Jean-Noël Octave

Intraneuronal accumulation of hyperphosphorylated protein tau in paired helical filaments together with amyloid-β peptide (Aβ) deposits confirm the clinical diagnosis of Alzheimer disease. A common cellular mechanism leading to the production of these potent toxins remains elusive. Here we show that, in cultured neurons, membrane depolarization induced a calcium-mediated transient phosphorylation of both microtubule-associated protein tau and amyloid precursor protein (APP), followed by a dephosphorylation of these proteins. Phosphorylation was mediated by glycogen synthase kinase 3 and cyclin-dependent kinase 5 protein kinases, while calcineurin was responsible for dephosphorylation. Following the transient phosphorylation of APP, intraneuronal Aβ accumulated and induced neurotoxicity. Phosphorylation of APP on Thr-668 was indispensable for intraneuronal accumulation of Aβ. Our data demonstrate that an increase in cytosolic calcium concentration induces modifications of neuronal metabolism of APP and tau, similar to those found in Alzheimer disease.


Embo Molecular Medicine | 2013

Amyloid precursor protein controls cholesterol turnover needed for neuronal activity.

Nathalie Pierrot; Donatienne Tyteca; Ludovic D'Auria; Ilse Dewachter; Philippe Gailly; Aurélie Hendrickx; Laetitia El Haylani; Nathalie Muls; Francisca N'Kuli; Annie Laquerrière; Jean-Baptiste Demoulin; Dominique Campion; Jean Pierre Brion; Pierre J. Courtoy; Pascal Kienlen-Campard; Jean-Noël Octave

Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full‐length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG‐CoA reductase (HMGCR)‐mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co‐immunoprecipitated and co‐localized in the Golgi. This interaction prevented Site‐2 protease‐mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24‐hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity.


American Journal of Pathology | 2012

Lack of Tau Proteins Rescues Neuronal Cell Death and Decreases Amyloidogenic Processing of APP in APP/PS1 Mice.

Karelle Leroy; Kunie Ando; Vincent Laporte; Robert Dedecker; Valérie Suain; Michèle Authelet; Céline Heraud; Nathalie Pierrot; Zehra Yilmaz; Jean-Noël Octave; Jean Pierre Brion

Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ.


Current Alzheimer Research | 2008

Processing of Amyloid Precursor Protein and Amyloid Peptide Neurotoxicity

Nathalie Pierrot; Jean-Noël Octave

Alzheimers disease is characterized by the presence of two types of lesions in brain: neurofibrillary tangles and senile plaques. Intraneuronal neurofibrillary tangles are made of paired helical filaments containing hyperphosphorylated microtubule associated protein tau. Extracellular senile plaques contain a core of beta-amyloid peptide (Abeta), which is produced by cleavage of the Amyloid Precursor Protein (APP). Among the two catabolic pathways of APP, the amyloidogenic pathway producing Abeta peptides was intensively studied in different cellular models expressing human APP. Differences in APP processing and in toxicity resulting from Abeta accumulation can be observed from one cell type to another. In particular, primary cultures of neurons process APP differently compared with other cultured cells including neuronal cell lines. Neurons accumulate intraneuronal Abeta, which is neurotoxic, and in these cells, APP can be phosphorylated at specific residues. Recent studies suggest that APP phosphorylation can play an important role in its amyloidogenic processing. In addition, protein kinases that phosphorylate APP are also able to phosphorylate the neuronal protein tau. Biochemical analysis of these two proteins in primary cultures of neurons show that phosphorylation of both APP and tau can be a factor linking the two characteristic lesions of Alzheimers disease.


Journal of Neurochemistry | 2013

From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein

Jean-Noël Octave; Nathalie Pierrot; Susana Ferao Santos; Natalia N. Nalivaeva; Anthony J. Turner

Despite intensive studies of the secretase‐mediated processing of the amyloid precursor protein (APP) to form the amyloid β‐peptide (Aβ), in relation to Alzheimers disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under‐investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid‐degrading enzyme neprilysin, and aquaporin‐1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.


The Journal of Neuroscience | 2009

Expression of Human Amyloid Precursor Protein in Rat Cortical Neurons Inhibits Calcium Oscillations

Susana Ferrao Santos; Nathalie Pierrot; Nicole Morel; Philippe Gailly; Christian Sindic; Jean-Noël Octave

Synchronous calcium oscillations are observed in primary cultures of rat cortical neurons when mature networks are formed. This spontaneous neuronal activity needs an accurate control of calcium homeostasis. Alteration of intraneuronal calcium concentration is described in many neurodegenerative disorders, including Alzheimer disease (AD). Although processing of amyloid precursor protein (APP) that generates Aβ peptide has critical implications for AD pathogenesis, the neuronal function of APP remains unclear. Here, we report that expression of human APP (hAPP) in rat cortical neurons increases L-type calcium currents, which stimulate SK channels, calcium-dependent K+ channels responsible for medium afterhyperpolarization (mAHP). In a neuronal network, increased mAHP in some neurons expressing hAPP leads to inhibition of calcium oscillations in all the cells of the network. This inhibition is independent of production and secretion of Aβ and other APP metabolites. In a neuronal network, reduction of endogenous APP expression using shRNA increases the frequency and reduces the amplitude of calcium oscillations. Altogether, these data support a key role for APP in the control of neuronal excitability.


Reviews in The Neurosciences | 2010

Network excitability dysfunction in Alzheimer's disease: insights from in vitro and in vivo models.

Susana Ferrao Santos; Nathalie Pierrot; Jean-Noël Octave

UNLABELLED Recent reports have drawn attention to dysfunctions of intrinsic neuronal excitability and network activity in Alzheimer disease (AD). Here we review the possible causes of these basic dysfunctions and implications for AD, based on in vitro and in vivo findings. We then review the current therapeutic approaches particularly linked to the issue of neuronal excitability in AD. CONCLUSION AD is a complex, neurodegenerative disorder. Hippocampal synaptic dysfunction is an early feature of the degenerative process that is clearly linked to memory impairment, the first and major symptom of AD. A growing body of evidence points toward a dysfunction of neuronal networks. Intrinsic neuronal excitability, mainly through profound dysregulation of calcium homeostasis, appears to be largely affected. Consequently, neuronal communication is disturbed. Such cellular defects might underlie cognitive manifestations like fluctuations in cognitive impairment and might also explain several observations obtained with EEG, MEG, MRI, or PET studies, leading to the concept of a disconnection syndrome in AD.


PLOS ONE | 2014

Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloid precursor protein of Alzheimer disease

Aurélie Hendrickx; Nathalie Pierrot; Olivier Schakman; Pascal Kienlen-Campard; Charles De Smet; Jean-Noël Octave

We previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from wild type (APP+/+) and APP knockout mice (APP−/−), we observed that APP down regulates expression of four immediate early genes, Egr1, c-Fos, Bdnf and Arc. Down regulation of Egr1, c-Fos and Bdnf transcription resulted from a decreased enrichment of acetylated histone H4 on the corresponding gene promoter. Further characterization of H4 acetylation at Egr1 and c-Fos promoters revealed increased acetylation of H4K5 and H4K12 residues in APP−/− mice. Whereas APP affected Egr1 promoter activity by reducing access of the CREB transcription factor, its effect on c-Fos appeared to depend on increased recruitment of HDAC2 histone deacetylase to the gene promoter. The physiological relevance of the epigenetic regulation of Egr1 and c-Fos gene transcription by APP was further analyzed following exposure of mice to novelty. Although transcription of Egr1 and c-Fos was increased following exposure of APP+/+ mice to novelty, such an induction was not possible in APP−/− mice with a high basal level of expression of these immediate early genes. Altogether, these results demonstrate that APP-mediated regulation of c-Fos and Egr1 by different epigenetic mechanisms is needed for their induction during exposure to novelty.


The FASEB Journal | 2014

Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease

Ilie-Cosmin Stancu; Laurence Ris; Bruno Barbosa de Vasconcelos; Claudia Marinangeli; Léonie Goeminne; Vincent Laporte; Laetitia El Haylani; Julien Couturier; Olivier Schakman; Philippe Gailly; Nathalie Pierrot; Pascal Kienlen-Campard; Jean-Noël Octave; Ilse Dewachter

Tau alterations are now considered an executor of neuronal demise and cognitive dysfunction in Alzheimers disease (AD). Mouse models combining amyloidosis and tauopathy and their parental counterparts are important tools to further investigate the interplay of abnormal amyloid‐β (Aβ) and Tau species in pathogenesis, synaptic and neuronal dysfunction, and cognitive decline. Here, we crossed APP/PS1 mice with 5 early‐onset familial AD mutations (5xFAD) and TauP301S (PS19) transgenic mice, denoted F+/T+ mice, and phenotypically compared them to their respective parental strains, denoted F+/T– and F–/T+ respectively, as controls. We found dramatically aggravated tauopathy (~10‐fold) in F+/T+ mice compared to the parental F–/T+ mice. In contrast, amyloidosis was unaltered compared to the parental F+/T– mice. Tauopathy was invariably and very robustly aggravated in hippocampal and cortical brain regions. Most important, F+/T+ displayed aggravated cognitive deficits in a hippocampus‐dependent spatial navigation task, compared to the parental F+/T– strain, while parental F–/T+ mice did not display cognitive impairment. Basal synaptic transmission was impaired in F+/T+ mice compared to nontransgenic mice and the parental strains (≥40%). Finally, F+/T+ mice displayed a significant hippocampal atrophy (~20%) compared to nontransgenic mice, in contrast to the parental strains. Our data indicate for the first time that pathological Aβ species (or APP/PS1) induced changes in Tau contribute to cognitive deficits correlating with synaptic deficits and hippocampal atrophy in an AD model. Our data lend support to the amyloid cascade hypothesis with a role of pathological Aβ species as initiator and pathological Tau species as executor.—Stancu, I.‐C., Ris, L., Vasconcelos, B., Marinangeli, C., Goeminne, L., Laporte, V., Haylani, L. E., Couturier, J., Schakman, O., Gailly, P., Pierrot, N., Kienlen‐Campard, P., Octave, J.‐N., Dewachter, I. Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimers disease. FASEB J. 28, 2620–2631 (2014). www.fasebj.org

Collaboration


Dive into the Nathalie Pierrot's collaboration.

Top Co-Authors

Avatar

Jean-Noël Octave

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pascal Kienlen-Campard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Ilse Dewachter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jean Pierre Brion

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Ilie-Cosmin Stancu

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Philippe Gailly

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Vincent Laporte

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laetitia El Haylani

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Olivier Schakman

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge