Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Schakman is active.

Publication


Featured researches published by Olivier Schakman.


American Journal of Physiology-endocrinology and Metabolism | 2009

Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin

Hélène Gilson; Olivier Schakman; Stéphanie Kalista; Pascale Lause; Kunihiro Tsuchida; Jean-Paul Thissen

Follistatin (FS) inhibits several members of the TGF-beta superfamily, including myostatin (Mstn), a negative regulator of muscle growth. Mstn inhibition by FS represents a potential therapeutic approach of muscle atrophy. The aim of our study was to investigate the mechanisms of the FS-induced muscle hypertrophy. To test the role of satellite cells in the FS effect, we used irradiation to destroy their proliferative capacity. FS overexpression increased the muscle weight by about 37% in control animals, but the increase reached only 20% in irradiated muscle, supporting the role of cell proliferation in the FS-induced hypertrophy. Surprisingly, the muscle hypertrophy caused by FS reached the same magnitude in Mstn-KO as in WT mice, suggesting that Mstn might not be the only ligand of FS involved in the regulation of muscle mass. To assess the role of activin (Act), another FS ligand, in the FS-induced hypertrophy, we electroporated FSI-I, a FS mutant that does not bind Act with high affinity. Whereas FS electroporation increased muscle weight by 32%, the muscle weight gain induced by FSI-I reached only 14%. Furthermore, in Mstn-KO mice, FSI-I overexpression failed to induce hypertrophy, in contrast to FS. Therefore, these results suggest that Act inhibition may contribute to FS-induced hypertrophy. Finally, the role of Act as a regulator of muscle mass was supported by the observation that ActA overexpression induced muscle weight loss (-15%). In conclusion, our results show that satellite cell proliferation and both Mstn and Act inhibition are involved in the FS-induced muscle hypertrophy.


American Journal of Physiology-cell Physiology | 2010

Role of TRPC1 channel in skeletal muscle function

Nadège Zanou; Georges Shapovalov; Magali Louis; Nicolas Tajeddine; Chiara Gallo; Monique Van Schoor; Isabelle Anguish; My Linh Cao; Olivier Schakman; Alexander Dietrich; Jean Lebacq; Urs T. Ruegg; Emmanuelle Roulet; Lutz Birnbaumer; Philippe Gailly

Skeletal muscle contraction is reputed not to depend on extracellular Ca2+. Indeed, stricto sensu, excitation-contraction coupling does not necessitate entry of Ca2+. However, we previously observed that, during sustained activity (repeated contractions), entry of Ca2+ is needed to maintain force production. In the present study, we evaluated the possible involvement of the canonical transient receptor potential (TRPC)1 ion channel in this entry of Ca2+ and investigated its possible role in muscle function. Patch-clamp experiments reveal the presence of a small-conductance channel (13 pS) that is completely lost in adult fibers from TRPC1(-/-) mice. The influx of Ca2+ through TRPC1 channels represents a minor part of the entry of Ca(2+) into muscle fibers at rest, and the activity of the channel is not store dependent. The lack of TRPC1 does not affect intracellular Ca2+ concentration ([Ca2+](i)) transients reached during a single isometric contraction. However, the involvement of TRPC1-related Ca2+ entry is clearly emphasized in muscle fatigue. Indeed, muscles from TRPC1(-/-) mice stimulated repeatedly progressively display lower [Ca2+](i) transients than those observed in TRPC1(+/+) fibers, and they also present an accentuated progressive loss of force. Interestingly, muscles from TRPC1(-/-) mice display a smaller fiber cross-sectional area, generate less force per cross-sectional area, and contain less myofibrillar proteins than their controls. They do not present other signs of myopathy. In agreement with in vitro experiments, TRPC1(-/-) mice present an important decrease of endurance of physical activity. We conclude that TRPC1 ion channels modulate the entry of Ca(2+) during repeated contractions and help muscles to maintain their force during sustained repeated contractions.


Hormone Research in Paediatrics | 2009

Mechanisms of muscle atrophy induced by glucocorticoids.

Olivier Schakman; Hélène Gilson; Stéphanie Kalista; Jean-Paul Thissen

Background: Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoid (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy results from decreased protein synthesis and increased protein degradation. The inhibitory effect of GCs on protein synthesis is thought to result mainly from the inhibition of the p70 ribosomal S6 protein kinase. The stimulatory effect of GCs on muscle proteolysis results from the activation of two major cellular proteolytic systems: ubiquitin proteasome and lysosomal systems. The decrease in muscle production of insulin-like growth factor I (IGF-I), a muscle anabolic growth factor, could contribute to GC-induced muscle atrophy. By activating the phosphatidylinositol-3-kinase/Akt pathway, IGF-I overrides GC action to stunt muscle atrophy. Evidence also indicates that increased production of myostatin, a catabolic growth factor, could play a critical role in GC-induced muscle atrophy. Conclusions: Recent progress in understanding the role of growth factors in GC-induced muscle atrophy allows investigation into new therapies to minimize this myopathy.


PLOS ONE | 2012

Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

Laure B. Bindels; Raphaël Beck; Olivier Schakman; Jennifer C. Martin; Fabienne De Backer; Florence Sohet; Evelyne M. Dewulf; Barbara D. Pachikian; Audrey M. Neyrinck; Jean-Paul Thissen; Julien Verrax; Pedro Buc Calderon; Bruno Pot; Corinne Grangette; Patrice D. Cani; Karen P. Scott; Nathalie M. Delzenne

The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle.


Endocrinology | 2008

Role of Akt/GSK-3β/β-Catenin Transduction Pathway in the Muscle Anti-Atrophy Action of Insulin-Like Growth Factor-I in Glucocorticoid-Treated Rats

Olivier Schakman; Stéphanie Kalista; Luc Bertrand; Pascale Lause; Josiane Verniers; Jean-Marie Ketelslegers; Jean-Paul Thissen

Decrease of muscle IGF-I plays a critical role in muscle atrophy caused by glucocorticoids (GCs) because IGF-I gene electrotransfer prevents muscle atrophy caused by GCs. The goal of the present study was to identify the intracellular mediators responsible for the IGF-I anti-atrophic action in GC-induced muscle atrophy. We first assessed the IGF-I transduction pathway alterations caused by GC administration and their reversibility by local IGF-I overexpression performed by electrotransfer. Muscle atrophy induced by dexamethasone (dexa) administration occurred with a decrease in Akt (-53%; P<0.01) phosphorylation together with a decrease in beta-catenin protein levels (-40%; P<0.001). Prevention of atrophy by IGF-I was associated with restoration of Akt phosphorylation and beta-catenin levels. We then investigated whether muscle overexpression of these intracellular mediators could mimic the IGF-I anti-atrophic effects. Overexpression of a constitutively active form of Akt induced a marked fiber hypertrophy in dexa-treated animals (+175% of cross-sectional area; P<0.001) and prevented dexa-induced atrophy. This hypertrophy was associated with an increase in phosphorylated GSK-3beta (+17%; P<0.05) and in beta-catenin content (+35%; P<0.05). Furthermore, overexpression of a dominant-negative GSK-3beta or a stable form of beta-catenin increased fiber cross-sectional area by, respectively, 23% (P<0.001) and 29% (P<0.001) in dexa-treated rats, preventing completely the atrophic effect of GC. In conclusion, this work indicates that Akt, GSK-3beta, and beta-catenin probably contribute together to the IGF-I anti-atrophic effect in GC-induced muscle atrophy.


International Journal of Pharmaceutics | 2013

Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury

Eduardo Ansorena Artieda; Pauline De Berdt; Bernard Ucakar; Teresa Simón-Yarza; Damien Jacobs; Olivier Schakman; Aleksandar Jankovski; Ronald Deumens; María J. Blanco-Prieto; Véronique Préat; Anne des Rieux

We hypothesized that local delivery of GDNF in spinal cord lesion via an injectable alginate hydrogel gelifying in situ would support spinal cord plasticity and functional recovery. The GDNF release from the hydrogel was slowed by GDNF encapsulation in microspheres compared to non-formulated GDNF (free GDNF). When injected in a rat spinal cord hemisection model, more neurofilaments were observed in the lesion when the rats were treated with free GDNF-loaded hydrogels. More growing neurites were detected in the tissues surrounding the lesion when the animals were treated with GDNF microsphere-loaded hydrogels. Intense GFAP (astrocytes), low βIII tubulin (neural cells) and RECA-1 (endothelial cells) stainings were observed for non-treated lesions while GDNF-treated spinal cords presented less GFAP staining and more endothelial and nerve fiber infiltration in the lesion site. The animals treated with free GDNF-loaded hydrogel presented superior functional recovery compared with the animals treated with the GDNF microsphere-loaded hydrogels and non-treated animals.


Human Molecular Genetics | 2012

Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus

Carlos Dombret; Tuan Nguyen; Olivier Schakman; Jacques L. Michaud; Hélène Hardin-Pouzet; Mathieu J.M. Bertrand; Olivier De Backer

MAGED1, NECDIN and MAGEL2 are members of the MAGE gene family. The latter two of these genes have been involved in Prader-Willi syndrome (PWS), which includes hyperphagia, repetitive and compulsive behaviors, and cognitive impairment. Here, we show that Maged1-deficient mice develop progressive obesity associated with hyperphagia and reduced motor activity. Loss of Maged1 also results in a complex behavioral syndrome that includes reduced social interactions and memory, deficient sexual behavior, as well as increased anxiety and self-grooming. Oxytocin (OT), which is produced in the hypothalamus, can act as a neurotransmitter that reduces anxiety, promotes social behaviors and regulates food intake. Growing evidences indicate that OT is involved in autism. We found that Maged1 mutants showed a severe reduction in the levels of mature OT, but not of its precursors, in the hypothalamus. Moreover, the administration of OT rescued the deficit in social memory of these mice. We conclude that Maged1 is required for OT processing or stability. A decrease in mature OT levels in Maged1 mutants affects social interactions and possibly other behavioral processes. Our observations suggest that, in human, MAGED1 could play a role in autism or cause a neurodevelopmental condition that is reminiscent of the PWS.


FEBS Letters | 2009

Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions.

Nadège Zanou; Yuko Iwata; Olivier Schakman; Jean Lebacq; Shigeo Wakabayashi; Philippe Gailly

Duchenne myopathy is a lethal disease due to the absence of dystrophin, a cytoskeletal protein. Muscles from dystrophin‐deficient mice (mdx) typically present an exaggerated susceptibility to eccentric work characterized by an important force drop and an increased membrane permeability consecutive to repeated lengthening contractions. The present study shows that mdx muscles are largely protected from eccentric work‐induced damage by overexpressing a dominant negative mutant of TRPV2 ion channel. This observation points out the role of TRPV2 channel in the physiopathology of Duchenne muscular dystrophy.


Endocrinology | 2012

The Type 1 Insulin-Like Growth Factor Receptor (IGF-IR) Pathway Is Mandatory for the Follistatin-Induced Skeletal Muscle Hypertrophy

Stéphanie Kalista; Olivier Schakman; Hélène Gilson; Pascale Lause; Bénédicte Demeulder; Luc Bertrand; Mario Pende; Jean-Paul Thissen

Myostatin inhibition by follistatin (FS) offers a new approach for muscle mass enhancement. The aim of the present study was to characterize the mediators responsible for the FS hypertrophic action on skeletal muscle in male mice. Because IGF-I and IGF-II, two crucial skeletal muscle growth factors, are induced by myostatin inhibition, we assessed their role in FS action. First, we tested whether type 1 IGF receptor (IGF-IR) is required for FS-induced hypertrophy. By using mice expressing a dominant-negative IGF-IR in skeletal muscle, we showed that IGF-IR inhibition blunted by 63% fiber hypertrophy caused by FS. Second, we showed that FS caused the same degree of fiber hypertrophy in wild-type and IGF-II knockout mice. We then tested the role of the signaling molecules stimulated by IGF-IR, in particular the Akt/mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (S6K) pathway. We investigated whether Akt phosphorylation is required for the FS action. By cotransfecting a dominant-negative form of Akt together with FS, we showed that Akt inhibition reduced by 65% fiber hypertrophy caused by FS. Second, we evaluated the role of mTOR in FS action. Fiber hypertrophy induced by FS was reduced by 36% in rapamycin-treated mice. Finally, because the activity of S6K is increased by FS, we tested its role in FS action. FS caused the same degree of fiber hypertrophy in wild-type and S6K1/2 knockout mice. In conclusion, the IGF-IR/Akt/mTOR pathway plays a critical role in FS-induced muscle hypertrophy. In contrast, induction of IGF-II expression and S6K activity by FS are not required for the hypertrophic action of FS.


Journal of Biological Chemistry | 2012

Trpc1 Ion Channel Modulates Phosphatidylinositol 3-Kinase/Akt Pathway during Myoblast Differentiation and Muscle Regeneration

Nadège Zanou; Olivier Schakman; Pierre Louis; Urs T. Ruegg; Alexander Dietrich; Lutz Birnbaumer; Philippe Gailly

Background: The PI3K/Akt pathway is involved in muscle development and regeneration. Results: Knocking out Trpc1 channels or inhibiting Ca2+ fluxes decreases PI3K/Akt activation, slows down myoblasts migration and impairs muscle regeneration. Conclusion: Trpc1-mediated Ca2+ influx enhances PI3K/Akt pathway during muscle regeneration. Significance: The activity of PI3K/Akt pathway is modulated by intracellular Ca2+. We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1−/− and Trpc1+/+ murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1−/− muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1−/− mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1−/− muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1−/− primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca2+ or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca2+ through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca2+-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.

Collaboration


Dive into the Olivier Schakman's collaboration.

Top Co-Authors

Avatar

Philippe Gailly

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Thissen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Nadège Zanou

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Audrey M. Neyrinck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Evelyne M. Dewulf

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Florence Sohet

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Hélène Gilson

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Julien Verrax

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laure B. Bindels

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Nathalie M. Delzenne

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge